
SpecHammer: Combining Spectre and Rowhammer
for New Speculative Attacks

Paper #312, 13 pages + references

Abstract—The recent Spectre attacks have revealed how the
performance gains from branch prediction come at the cost
of weakened security. Spectre Variant 1 (v1) shows how an
attacker-controlled variable passed to speculatively executed lines
of code can leak secret information to an attacker. Numerous
defenses have since been proposed to prevent Spectre attacks,
each attempting to block all or some of the Spectre variants. In
particular, defenses using taint-tracking are claimed to be the
only way to protect against all forms of Spectre v1. However,
we show that the defenses proposed thus far can be bypassed
by combining Spectre with the well-known Rowhammer vulner-
ability. By using Rowhammer to modify victim values, we relax
the requirement that the attacker needs to share a variable with
the victim. Thus, defenses that rely on this requirement, such as
taint-tracking, are no longer effective. Furthermore, without this
crucial requirement, the number of gadgets that can potentially
be used to launch a Spectre attack increases dramatically; those
present in Linux kernel version 5.6 increases from about 100 to
about 20,000 via Rowhammer bit-flips. Attackers can use these
gadgets to steal sensitive information such as stack cookies or
canaries, or use new triple gadgets to read any address in memory.
We demonstrate two versions of the combined attack on example
victims in both user and kernel spaces, showing the attack’s
ability to leak sensitive data.

I. INTRODUCTION

Computer architecture development has long put emphasis
on optimizing for performance in the common case, often
at the cost of security. Speculative execution is one feature
following this trend, as it provides significant performance
gains at a detrimental security cost. This feature attempts to
predict a program’s execution flow before determining the
correct path to take, saving time on a correct prediction,
and simply rolls back any code executed in the case of
a misprediction. However, such predictions may mistakenly
speculate that malicious code or values are safe, allowing for
attackers to temporarily bypass safeguards and run malicious
code within misspeculation windows.

The potential of such speculative and out-of-order exploits
was first demonstrated by Spectre [25] and Meltdown [31],
which revealed a new class of vulnerabilities rooted in tran-
sient execution. These attacks have shaken the world of
computer architecture and security, leading to a large body
of work in transient execution attacks [4], [5], [24], [33], [42]
and defenses [5], [38], [39], [46], [51].

Moving away from information leakage, Rowhammer [23]
is a complimentary vulnerability that breaks the integrity of
data and code stored in a machine’s main memory. More
specifically, the tight packing of transistors in DRAM DIMMs
allows attackers to induce bit-flips in inaccessible memory
addresses, by rapidly accessing physically-adjacent memory

rows. Similarly to Spectre, Rowhammer has spawned numer-
ous exploits [3], [11], [13], [17], [18], [27], [32], [34], [37],
[40], [43], [45], [47], including the recent bypass of dedicated
defenses, such as Targeted Row Refresh (TRR) [50] and Error
Correcting Codes (ECC-RAM) [9].

While both Spectre and Rowhammer have been extensively
studied individually, much less is known, however, about
the combination of both vulnerabilities. Indeed, only one
prior work, GhostKnight [55], has considered the new exploit
potential resulting from combining both techniques. At a high
level, GhostKnight demonstrates that despite their transient
nature, speculative memory accesses can cause bit-flips in
addresses that Rowhammer could not reach alone, resulting
in bit-flips at those memory locations. However, GhostKnight
only shows how Spectre can be used to enhance Rowhammer,
and neglects to consider the complimentary question of how
Rowhammer may be used to enhance Spectre. Noting that
most modern machines are vulnerable to both Spectre and
Rowhammer, in this paper we ask the following questions:

Can the Rowhammer vulnerability be used to strengthen
Spectre attacks? In particular, can an attacker somehow
leverage Rowhammer to alleviate Spectre’s main limitation
of having a gadget inside the victim’s code with attacker
controlled inputs? Finally, what implications do combined
attacks have on existing Spectre mitigations?

A. Our Contributions

We demonstrate that Rowhammer and Spectre can, in fact,
be combined to evade the proposed defenses and increase the
number of exploitable gadgets in widely-used code. In what
follows, we provide a high-level overview of this combined
attack, called SpecHammer, and discuss our discovery of
newly exploitable gadgets in the kernel.
Attack Methods. The core idea of SpecHammer is to
trigger a Spectre v1 attack by using Rowhammer bit-flips to
insert malicious values into victim gadgets. We present two
forms of SpecHammer: the first relaxes the restrictions on
ordinary Spectre gadgets (which will henceforth be called
double gadgets), and the second uses new triple gadgets to
provide arbitrary reads with just a single bit-flip.
Double Gadget Exploit. Ordinarily, Spectre v1 allows an
attacker to send any malicious value to a Spectre gadget and
read memory arbitrarily within the victim’s address space.
The main weakness of Spectre v1 is that it requires a gadget
within the victim’s code that uses an attacker controlled offset
variable, limiting Spectre v1’s attack surface. The target for the
first version of SpecHammer, however, is a portion of code that

meets all the requirements of a Spectre gadget, but does not
provide the attacker any direct way to control the victim offset.
By using Rowhammer, it is possible to modify the offset and
trigger a Spectre attack on such victims to leak sensitive data.
This attack eliminates Spectre v1’s main weakness, allowing
for exploits on a wider range of code.

Unfortunately, Rowhammer can be used to flip, at best, only
a few bits for a given word of memory, limiting control the
attacker has over the victim offset. Nonetheless, we demon-
strate how the attacker, even with limited control, is still able
to leak sensitive data. For example, it is feasible to flip bits in
the offset such that it points to just past the bounds of an array.
This allows for leaking secret stack data, such as stack canaries
designed to protect against buffer-overflow attacks [10]. That
is, we show how the double gadget exploit can be used to leak
such secrets, bypassing stack protection mechanisms.
Triple Gadget Exploit. While the first exploit poses a threat
to a common defense against buffer-overflow attacks, its scope
is more limited than the original Spectre attack which leaked
arbitrary memory in the victim’s address space. The second
type of SpecHammer attack, however, can be used to dump
the data of any address in memory. This method relies on a
triple gadget, which has similar behavior to the Spectre v1
gadget, except that it features a triple nested access. Using
this, the attacker can modify an offset to point to attacker-
controlled data. This data can be set to point to secret data,
which leads to the use of secret data in a nested array access,
just as is done in Spectre v1. The attacker-controlled data
can be modified to point to any secret within the attacker’s
address space, including kernel memory when exploiting a
triple gadget residing in the kernel. Thus, a single bit-flip
allows for arbitrary memory reads, as opposed to the double
gadget which is more restricted in what addresses it can leak.
Challenges. Implementing these SpecHammer attacks
presents several key challenges:
1) We must find addresses containing useful Rowhammer bit-

flips that can force a victim to access secret data under
misspeculation.

2) We need to massage memory to force victims to allocate
their array offset variables at addresses that contain these
useful flips. For targets residing in the kernel, this means
massaging kernel stack memory.

3) We must demonstrate that flipping an array offset value in
a Spectre v1 gadget can leak data under misspeculation.

4) Finally, we need to find gadgets in sensitive real-world code
to understand the impact of relaxing gadget requirements.

Challenge 1: Producing Sufficient Rowhammer Flips.
SpecHammer requires bit-flips at specific page offsets in order
to leak secret data. To that aim, we used the code repositories
attached to prior work [16], [44], [48], [50] in order to
test the susceptibility of DRAM DIMMs to Rowhammer
attacks. Unfortunately, the amount of flips produced by these
repositories suggests it is hard to find a DIMM with enough
bit-flips to practically execute SpecHammer.

However, as we show in Section IV, we observe that all of
these repositories make a key oversight regarding cached data:

they first initialize victim rows, and then induce bit-flips in
DRAM (not caches), but neglect to flush the victim cache line
before checking for flips. This leads them to observe cached
data when checking for flips, leaving many flips in the DRAM
arrays unobserved. By correcting these oversights, we are able
to increase the number of bit flips by 248x in the worst case
and 525x in the best case on DDR3, and 16x in the best case on
DDR4, demonstrating bit-flips are much more common than
previous work would suggest. Not only does this allow us to
run SpecHammer, but it also makes Rowhammer attacks more
practical than previously thought.
Challenge 2: Stack Massaging. For the SpecHammer attack,
the target for Rowhammer bit-flips is a variable used as an
index into an array. Such offsets are most often allocated
as local variables, meaning they are located on the stack.
Rowhammer attacks rely on massaging targets onto physical
addresses that are vulnerable to bit-flips. However, to the best
of our knowledge, only one prior work [40] has demonstrated
hammering stack variables, relying on memory deduplication
to massage stack data as needed. With deduplication now
disabled by default, SpecHammer thus requires a new way
of massaging a victim stack into place. Furthermore, the most
attractive targets for this attack are gadgets residing in the
kernel, as they can be used to leak kernel data, and hence a
kernel stack massaging primitive is highly desirable.

Yet, the prior examples of kernel massaging focused on
PTEs, rather than the stack [43], or were performed on mobile
devices, taking advantage of features exclusive to Android
[47]. Thus, we develop new primitives for massaging both
user and kernel stacks, in order to allow for stack hammering
without the use of deduplication (Section V).
Challenge 3: Proof-of-Concept (PoC) Demonstration. As a
proof of concept, we demonstrate (in Section VI) the variations
of the attack on example artificial victims in both user and
kernel spaces. We demonstrate the double gadget attack in
user space and the triple gadget attack in kernel space due to
each attack’s applicability in its respective space. These PoC
attacks act as the basis for eventual attacks on the gadgets
already found in widely-used code, and show that the attack
is capable of leaking data at a rate of up to 24 bits/s on DDR3
and 19 bits/min on DDR4.
Challenge 4: Kernel Gadgets. In order to better understand
the effects of relaxing gadget requirements, we found the
number of gadgets present in the Linux kernel, with the
original Spectre v1 restrictions compared to the amount of
SpecHammer gadgets. As shown in Section VII, we find that
with the original requirements, there are about 100 ordinary,
double gadgets, and only 2 triple gadgets. Modifying the
function to search for gadgets vulnerable to our SpecHammer
attack leads it to report about 20,000 double gadgets, and about
170 triple gadgets. Thus, we show the number of potential
gadgets in the kernel is greater than previously understood.
Summary of Contributions. This paper makes the following
contributions:
• Combining Rowhammer and Spectre to relax the crucial

requirement of an attacker-controlled offset for Spectre

2

gadgets, discovering more than 20,000 additional gadgets
in the Linux kernel (Section III & Section VII).

• Development of new methods for precisely massaging a vic-
tim stack in user space, and for massaging kernel memory,
allowing an attacker to exploit the numerous gadgets present
in the Linux kernel (Section V).

• Correcting oversights made by prior Rowhammer techniques
to improve bit-flip rate by 525x in the best case (Section IV).

• Demonstrating how SpecHammer gadgets can be used to
obtain stack canaries for buffer-overflow attacks and how
triple gadgets can be used to provide arbitrary reads from
any memory address on example user and kernel space
victims, respectively (Section VI).

II. BACKGROUND

We present the necessary background information on Spec-
tre and Rowhammer needed to understand the new combined
attack, SpecHammer. Since Spectre relies on previous cache
side-channels, relevant cache attacks are explained as well.

A. Cache Side-Channel Attacks

The cache was initially designed to bridge the gap between
processor speeds and memory latency, but inadvertently led to
a powerful side-channel exploited for numerous attacks [25],
[35], [36], [52], [53]. By timing memory accesses, an attacker
can tell whether data is being pulled from the cache (a fast
access) or DRAM (a slow access), and can therefore observe
a victim’s memory access patterns.

Most relevant to SpecHammer is the FLUSH+RELOAD
technique [53]. The goal is to use the cache to observe a
victim’s access patterns on memory shared by the victim and
attacker. For example, if a victim accesses particular addresses
dependent on a secret value (e.g., using bits of a secret key
as an array index), understanding which addresses the victim
accesses can leak valuable secret information.

The technique first prepares the cache by flushing any cache
lines the victim may potentially access using the clflush
instruction. Then the victim is allowed to run, and will
only access particular addresses dependent on secret data,
loading only the corresponding blocks into the cache. Next,
the attacker accesses all blocks of memory the victim may
have accessed, while timing each access. If the access is slow,
it implies data needs to be moved from DRAM to the cache,
meaning the victim did not access any addresses within the
block. However, if the access is fast, data is being pulled
from the cache, meaning the victim must have accessed an
address corresponding to the same cache line. Thus, by taking
advantage of the drastic timing difference in latency between a
cache hit versus a cache miss, attackers can accurately discern
which addresses a victim interacts with and, consequently, any
secret data used to control which addresses were accessed.

B. Spectre

Speculative and Out-of-Order Execution. In order to
improve performance, modern processors utilize out of order
execution to avoid necessarily waiting for instructions to

complete when subsequent instructions are ready to be run.
In the case of linear execution flow, processors utilize out of
order (OoO) execution, running instructions out of program
order, and only committing instructions once all preceding
instructions have been committed as well. When a program
has branching execution paths that depend on the result of
certain instructions, the processor uses speculative execution,
predicting which path the branch will take. If the prediction is
incorrect, any code run in the speculation window is simply
undone, causing negligible performance overhead compared to
not speculating at all.
Transient Execution Attacks. Running instructions before
prior instructions have committed, due to OoO or speculative
execution, creates a period of transient execution. Such tran-
sient execution windows have long been considered benign,
as any code that should not have run is rolled back, and
only proper code is committed. However, through the Melt-
down [31] and Spectre [25] attacks, researches have recently
demonstrated how OoO and speculative execution, can be
used by attackers to force programs to run using malicious
values, uninhibited by safe guards that only take effect after
the transient execution is complete. By the time the code is
rolled back, the malicious values have left architectural side
effects (e.g. placed data in the cache) that can be used to leak
data even through transient execution. SpecHammer focuses
on Spectre and the domain of speculative execution.

1 if(x < array1_size){
2 y = array1[x]
3 z = array2[y * 4096];
4 }

Listing 1: Spectre v1 Gadget
Spectre Attacks. Spectre [25] presents multiple ways
in which an attacker can exploit speculative execution. We
focus on Spectre v1, which is illustrated with the following
example. Assume the victim contains the lines of code shown
in Listing 1 and x is an attacker-controlled variable. The
attack requires first training the branch predictor to predict
that the if statement will be entered. The attacker can then
change x such that reading array1[x] accesses a secret
value beyond the end of array1. Even though x may be
out of bounds, the secret value will still be accessed thanks
to speculative execution, as the branch predictor has been
trained accordingly. While the data read from array2 is never
committed to z, speculative execution still causes array2 to
use the secret value y as an index and load data at (“secret”
* 4096) + array2 base address into the cache.

The attacker then uses FLUSH+RELOAD [53] to check what
cache line was pulled, to reveal the array2 index, exposing
the secret value. One key assumption this attack makes is
that the attacker controls x, as she needs to change x to the
malicious value used to access secret data via array1.
Prevalence of Gadgets. Since Spectre attacks rely on
the presence of a gadget in the victim code, the prevalence
of gadgets in sensitive code becomes a crucial question.
Researchers have developed tools [19], [29], [51] to automate
the process of finding gadgets within target code. For example,

3

smatch [29], a kernel debugging tool, was extended with the
capability to report Spectre v1 gadgets within the Linux kernel.
On kernel version 5.6, smatch reports about 100 gadgets.
Followup Attacks. Upon Spectre’s discovery, numerous
papers emerged detailing how alternate variants could be used
for new attack vectors [4], [7], [20], [24], [26], [33], [41], [42].
These included performing speculative writes [24], running a
Spectre attack over a network [42], and combining Spectre
with other side-channels to exploit “half gadgets” that require
a single array access within a conditional statement [41].

C. Rowhammer

The Rowhammer bug [23] presents a way of modifying
values an attacker does not have direct access to. The exploit
takes advantage of the fact that DRAM arrays use capacitors
to store bits of data, where a fully-charged capacitor indicates
a 1 and a discharged capacitor indicates a 0. As transistors
became smaller, DRAM became more dense, packing the
capacitors closer together. [23] found that by rapidly accessing
values in DRAM, causing them to be quickly discharged
and restored to their original values, disturbance effects can
increase the leakage rate of capacitors in neighboring rows.
Thus, by rapidly accessing (or “hammering”) an aggressor row,
an attacker can discharge neighboring capacitors flipping 1s to
0s (or 0s to 1s) in neighboring memory locations.
DRAM Organization & Double-Sided Rowhammer. A
DRAM array consists of multiple channels, each of which
corresponds to a set of ranks, where each ranks holds numer-
ous banks. Each bank consists of an array of rows made of
capacitors containing the individual bits of data. While it is
possible to cause flips by rapidly accessing single DRAM rows
[17], it is much more efficient to use double-sided Rowham-
mer (i.e alternating between hammering two aggressor rows
surrounding a single victim row). By increasing the number
of adjacent accesses, the capacitor’s leakage rate increases,
drastically improving the efficiency of inducing flips. Double-
sided Rowhammer requires hammering adjacent DRAM rows
within the same bank. However, attackers cannot directly see
the DRAM addresses of values they interact with. Instead,
they can only see the virtual addresses. These are mapped to
physical address, which are mapped to DRAM addresses.
Exploits. As with Spectre, Rowhammer inspired numerous
exploits taking advantage of the ability to modify inaccessible
memory. This began with Seaborn and Dullien [43] demon-
strating how a flip can be used both to perform a sandbox
escape, as well overwrite page table entries. Many exploits
followed [1], [3], [17], [27], [32], [34], [37], [40], [45], [47],
demonstrating how Rowhammer can be used for privilege
escalation on mobile devices [47], flipping bits through a web
browser using JavaScript [16], as well as remotely attacking a
victim over a network [32], [45]. Gruss et al. [17] additionally
showed how many Rowhammer defenses can be defeated.
GhostKnight. To the best of our knowledge, only one prior
work, GhostKnight [55], has demonstrated how Spectre and
Rowhammer can be combined for a more powerful attack.
Since Spectre allows for accessing arbitrary memory within a

given address space, GhostKnight made the observation that
rapidly accessing a pair of aggressor addresses can cause flips
in the speculative domain. This effectively increases Rowham-
mer’s attack surface by allowing for bit-flips at addresses only
reachable under speculative execution.

III. SPECHAMMER

Our combined SpecHammer attack shows how Rowhammer
can be used to enhance Spectre, bypassing proposed defenses
and relaxing the requirements for a Spectre v1 gadget. We
present two versions: a double gadget attack and triple gadget
attack, each striking a different trade-off between the attack’s
capabilities and the assumptions made regarding the availabil-
ity of gadgets in the victim’s code.

A. Double Gadget Attack: Removing Attacker Control

As discussed in Section II, a key limitation of Spectre v1
is that the attacker must control a variable used as a victim
array index. We relax this restriction by using Rowhammer to
modify the index variable without direct access.

1 if(x < array1_size){
2 victim_data = array1[x]
3 z = array2[victim_data * 512];
4 }

Listing 2: Pseudocode double gadget
Attack Overview. At a high level, the goal of the double
gadget exploit is to mount Spectre v1 attacks even if the
attacker does not have direct control over the array offset. We
use Rowhammer to modify this offset value, causing an array
to access secret data and leak it via a cache side-channel.

Listing 2 presents a gadget exploited by the first version
of our attack, which uses the same gadgets as Spectre v1. In
addition to assuming the presence of such code gadgets in
the victim’s code, we also assume that the victim’s address
space contains some secret data. Finally, unlike the Spectre
v1 attack, we do not assume any adversarial control over the
values of x. Rather than controlling x directly, the attacker
instead exploits Rowhammer to trigger a bit-flip in the value
of x, such that array1[x] accesses the secret data.
Step 1: Memory Templating. The first step in any
Rowhammer-based attack is to template memory in order to
find victim physical addresses that contain useful bit-flips,
i.e., a flip that will cause x to point to the desired data.
As described in Section II, templating essentially consists
of hammering many physical addresses until finding a pair
of aggressors that correspond to a victim row with a useful
flip. After finding a physical address with a suitable flip, our
memory massaging technique (see Section V) is used to ensure
that the value of x resides in this physical address, making it
susceptible to Rowhammer-induced bit-flips.
Step 2: Branch Predictor Training. After placing the vic-
tim’s code in a Rowhammer-susceptible location, the attacker
trains the victim’s branch predictor by executing the victim
code normally. As we are executing the victim’s code with
legal values of x, it is the case where x < array1_size,
which results in the CPU’s branch predictor being trained to

4

Fig. 1: Example attack scenario. (left) Training phase with legal value. (right) Attack phase with malicious value.

predict that the if in the first line of Listing 2 is taken. See
Figure 1(left) for an illustration.
Step 3: Hammering and Misspeculation. Next, the attacker
hammers x, leading to the state in Figure 1(right), where a
bit-flip (marked in red) increases the value of x such that it
points to the secret data past the end of array1. It is also
necessary for the attacker to evict the value of x from the
cache beforehand, ensuring the next time it is read, the flipped
value in DRAM is used, as opposed to the previously cached
value. After evicting array1_size, the attacker triggers the
victim’s code. As array1_size is not cached, the CPU uses
the branch predictor, and speculates forward assuming that the
if in Line 1 of Listing 2 is taken. Next, due to the bit-flip
affecting x, the access to array1 uses a malicious offset,
resulting in secret being used as array2’s index, thereby
causing a secret-dependent memory block to be loaded into
the cache. Finally, the CPU eventually detects and attempts
to undo the results of the incorrect speculation, returning the
victim to the correct execution according to program order.
However, as discovered by Spectre [25], the state of the
CPU’s cache is not reverted, resulting in a secret-dependent
element of array2 being cached. See Figure 1(right).
Step 4: Flush+Reload. To recover the leaked data from
the speculative domain, the attacker uses a FLUSH+RELOAD
side channel [53] in order to retrieve the secret. More specif-
ically, the attacker accesses each value of array2 while
timing the duration of each memory accesses. Since all
values of array2 were previously flushed from the cache,
the attacker’s timed access should be slow if no accesses
happened between the eviction and this stage of the attack.
However, if a timed access is fast, that memory block must
have been recently accessed. In this case, due to the access
to array2[secret*512] during speculation, the attacker
should observe a fast access when measuring the offset
secret*512, thereby learning the value of secret.

B. Triple Gadget Attack: Enabling Arbitrary Memory Reads

The attack presented in Section III-B assumes that the at-
tacker can use Rowhammer to flip arbitrary bits in the victim’s
physical memory. In practice, however, Rowhammer-induced
bit-flips are not sufficiently common to flip the number of bits
required for leaking arbitrary addresses. An attacker can flip, at
most, a few bits of the array offset, limiting the addresses she
can reach. In order to provide for arbitrary reads even with the
limited control provided by Rowhammer, we develop another

variation that utilizes “triple gadgets”. With just a single bit-
flip, an attacker can use a triple gadget to point an array offset
to attacker controlled data. This data can then be set to point
to any value in memory, allowing an attacker to leak arbitrary
data with a single flip, as detailed below.
1 if(x < array1_size){
2 attacker_offset = array0[x]
3 victim_data = array1[attacker_offset]
4 y = array2[victim_data*512];
5 }

Listing 3: Pseudocode triple gadget
Attack Overview. For the triple gadget attack, we utilize
a new type of code gadget; see Listing 3 for an example.
At a high level, while the original Spectre v1 assumed that
an attacker controlled variable x is used by the victim for a
nested access into two arrays (e.g., array2[array1[x]]),
here we assume that the victim performs a triple nested access
using x, namely, array2[array1[array0[x]]].

By using such gadgets, the attacker can modify the inner-
most array offset (x) such that array0[x] points to attacker
controlled data. This, in turn, allows her to send arbitrary
offsets to array2[array1[]], resulting in the ability to
recover arbitrary information from the victim’s address space.
More specifically, our attacks proceeds as follows.
Steps 1+2: Memory Profiling and Branch Predictor Train-
ing. As in Section III-A, the attacker starts by profiling the
machine’s physical memory, aiming to find physical addresses
that contain useful bit-flips. The attacker then executes the
victim’s code normally, thus training the branch predictor to
observe that the if in Line 1 of Listing 3 is typically taken.
Step 3: Hammering and Misspeculation. Next the attacker
hammers x, leading to the state in Fig. 2, in which a bit-flip
(marked in red) increases the value of x such that it points
past the end of array0, into attacker controlled data. As in
the case of Section III-A, the attacker triggers the victim’s
code after evicting array1_size, which causes the CPU to
fall back onto the branch predictor, speculatively executing the
branch in Line 1 of Listing 3 as if it was taken. The attacker
controls the value in address array0+x, which results in
an attacker-controlled value being loaded as the output of
array0[x] in Line 2. Proceeding with incorrect speculation,
the CPU executes array1[array0[x]] (Lines 2 and 3),
resulting in the attacker controlling (through array0[x])
which address the victim loads from memory. The value of
array1[array0[x]] is then leaked through the cache side
channel, following the access to array2 in Line 4.

5

Fig. 2: Triple gadget example

Step 4: Flush+Reload. Finally, as in the case of Section III-A,
the attacker uses a FLUSH+RELOAD side channel in order to
leak the value accessed during speculation.
Comparison to Double Gadgets. While the triple gadgets
require a triple-nested array access inside the victim’s code,
they also offer the advantage that multiple precise bit-flips are
no longer needed for reading the victim’s data. In particular,
as only one bit-flip is used to point array0[x] into attacker-
controlled data, multiple values can be read using the same bit-
flip value. By varying the value of array0[x] and launching
the attack repeatedly, the attacker can dump the entire victim
address space using a single carefully controlled bit-flip.
Kernel Attacks. This attack is particularly dangerous when
performed on a gadget residing in the kernel, as a single bit-
flip can be used to read the entire kernel space. At first blush, it
may seem that Supervisor Mode Access Prevention (SMAP),
which prevents kernel-to-user accesses, will prevent the attack
by disallowing the kernel from accessing the user-controlled
data on line 2 of Listing 3. However, in Section VI-B we
show how to bypass this mitigation, demonstrating how an
attacker can use syscalls to inject data into the kernel, and
afterwards use a single bit-flip to point from the gadget to this
controlled kernel data. Since SMAP does not block kernel-to-
kernel reads, this technique allows for performing the triple
gadget attack even with SMAP enabled.

IV. MEMORY TEMPLATING

The high level description provided in Section III assumes
two key prerequisites. First, the memory templating step is
used to find useful flip-vulnerable address. Next, the memory
massaging step is used to force the target victim variable
to use this address. In this section, we describe the memory
templating process, deferring stack massaging to Section V.

The goal of templating is to obtain ”useful” bit-flips,
meaning they can be used to flip an array offset variable
and trigger a SpecHammer attack. Vulnerability to bit-flips
depends on the nature of an individual DIMM, requiring
hammering many addresses to learn which ones contain useful
flips. The techniques used for templating borrow largely from

existing work, and we therefore keep the descriptions high-
level, referring readers to the appropriate prior work [27], [37]
and giving a more detailed description in Appendix A.

A. Obtaining DRAM row indices from virtual addresses

As explained in Section II, Rowhammer is drastically more
effective when two aggressor rows that pinch a victim row
are hammered in succession, a technique called double sided
hammering [23]. Finding flips via double sided Rowhammer
requires controlling three consecutive DRAM rows. However,
as unprivileged attackers, we have no direct way of determin-
ing how our virtual pages map to DRAM rows, preventing us
from performing double sided hammering. We must therefore
reverse engineer this mapping before we can begin hammering.
Since virtual address map to physical addresses, which in
turn map to DRAM rows, we must obtain both the virtual
to physical and physical to DRAM mappings.

For the latter, we use Pessl’s DRAMA technique [37]. For
the former, we only need the physical address bits used to
determine the corresponding rank, bank, and channel. For
a Haswell processor using DDR3, these are the lowest 21
bits. Thus, we can use the techniques presented in RAM-
Bleed [27], to obtain a conitguous 2MiB page, giving us the
lower 21 physical address bits. Since this technique relies on
the recently restricted pagetypeinfo file, we use a new
technique that relies on the world-readable buddyinfo file
instead (see Appendix A) The time required for this step is
unaffected by using the new buddyinfo technique.

For newer architectures that use DDR4 memory, we fol-
low the methodology of TRRespass [14], using transparent
hugepages which are enabled by default in Linux kernel
version 5.14, the latest version at the time of writing. Note that
for a one-DIMM configuration, only up to bit 21 is needed,
even on newer architectures. For two-DIMM configurations, it
is possible to use memory massaging techniques to obtain up
to 4MB of contiguous memory.

B. Hammering Memory

With all the obtained memory sorted into rows, we initialize
the aggressors and victims with values reflective of our desired
flips. In our case, we seek to increase an array offset value to
point to secret data, meaning we want to flip a particular victim
bit from 0 to 1. We therefore initialize potential victim rows to
contain all 0s. Since double sided hammering is most effective
when the victim bit is pinched between two bits of the opposite
value [23], [27], we set aggressor rows to all 1s, giving a 1-0-1,
aggressor-victim-aggressor stripe configuration.
Inducing Flips. As done in prior work and existing Rowham-
mer templating code [16], [44], [50], [54], we repeatedly read
and flush aggressor rows from the cache to ensure each read
directly accesses DRAM and causes disturbance effects on
neighboring rows. After doing a fixed number of reads, we
read the victim row to check for any bit-flips, which in this
case would mean a bit set to 1 anywhere in the victim row’s
value. We save addresses containing useful flips (i.e., a bit-flip
that would cause an array offset to point to a secret), and move

6

onto the memory massaging phase. Note that the above steps
neglect to flush the victim address cache lines. Consequently,
when we try to read the victim to check if we induced a flip,
we will likely be reading cached initial data.
The Need for Useful Flips. Upon running existing Rowham-
mer code [16] on numerous DDR3 DIMMs, we experienced a
somewhat low flip-rate of approximately 2 to 5 flips per hour.
However, for our SpecHammer attack, we require specific bit-
flips (a single bit position out of a 4KiB page), to point from
an array to a secret, meaning it would take an infeasibly long
amount of time to find the required bit in the average case. One
option to overcome this would be to test many DIMMs until
finding one particularly susceptible to Rowhammer, limiting
the attack only to such susceptible DIMMs. However, we
observed an oversight in existing Rowhammer repositories
pertaining to the issue of cached victim data, which causes
a susceptible DIMM to appear sturdy against flips, when,
in fact, a vast majority of flips are simply being masked
by cached data. By modifying these existing repositories, we
found that the same DIMMs are vulnerable to thousands of
flips per hour, allowing us to perform our attack on DIMMs
that were previously thought to be safe.
Under-reported Flip-rate in Prior Work. Upon inspection
of numerous public Rowhammer repositories [16], [44], [50],
[54] designed to test a DIMM’s vulnerability to Rowhammer,
we observed that they all made the victim row cache oversight
mentioned in the previous paragraph. By performing the above
steps, reading a victim row to check for a bit-flip will likely
result in reading the cached initialization data, leading to
severe under-reporting of the actual number of flips obtainable
on any tested DIMMS. Any flips that are reported are likely
due to victim data being unintentionally evicted from the cache
due to other memory accesses replacing those cache lines. In
Appendix C we describe experiments we conducted to prove
that cache effects are indeed responsible for masking bit flips.
Comparison of Rowhammer Techniques. In order to fully
understand the effect this oversight had on finding bit-flips, we
compared prior work with our victim cache flush modification.

The results are presented in Table I. We ran each program
using double sided hammering over a two hour period with a
1-0-1 stripe configuration, then for 2 hours testing for using
0-1-0. The total flips over both runs are shown in the table.

Note that the repository for Rowhammer.js [16] contains an
error that uses virtual addresses rather than physical addresses
when determining which addresses reside on the same bank,
and is thus split into 2 entries: one for the unmodified
Rowhammer.js and the other for the same code with the error
removed excluding the cache flush oversight. Finally, we used
TRResspass [14], the latest Rowhammer templating repository,
exclusively for DDR4, since it uses techniques designed to
bypass DDR4 exclusive defenses. The changes we made to
these repositories are detailed in Appendix B.

We perform our DDR3 experiments on a Haswell i7-4770
CPU with Ubuntu 18.04 and Linux kernel version 4.17.3. For
the DDR4 experiments, we use a Coffee Lake i7-8700K CPU
with Ubuntu 20.04 and Linux kernel version 5.8.0.

Results. For DDR3, when compared to Rowhammer.js with
the addressing error removed, our code improved the flip rate
by 248x in the worst case, and by a factor of x525 in the best
case. As for TRResspass, we found that modifying the the code
to include victim cache flushes resulted in 6x to 8x flips on
DDR4 DIMMs. While prior Rowhammer surveys have found
larger numbers of flips [8], [22], they did so using techniques
unavailable on general purpose machines. In the case of
[22], the goal was to understand DIMMs vulnerability to
Rowhammer at the circuit level, and thus DIMMs were tested
via FPGAs to remove higher-level sources of interference that
may have reduced the number of flips. Similarly, [8] sought to
achieve flips on servers, and their techniques can only work on
multi-socket systems. In contrast, we use code that is designed
for users to test their own machines for Rowhammer bugs, and
show how ensuring that the victim row is flushed before it is
checked can drastically increase the number of flips.

In order to verify these additional flips were a result of cache
flushing, we performed additional experiments to verify that
data was in fact being pulled from memory and not the cache
for each flip. These experiments are detailed in Appendix C.

Fig. 3: Linux memory organization

V. MEMORY (STACK) MASSAGING

With possession of a useful, flip-vulnerable address, the
next step is to force the victim variable into this address. The
target victim is a variable used as an offset into an array. Such
variables are most often allocated as local variables, and hence
reside on the victim’s stack. Therefore, in order to flip such
variables and trigger the attack, we need to place the victim’s
stack on the flip-vulnerable page obtained from the templating
step. Only one prior work has demonstrated stack massaging
[40], and used (the now-disabled) page deduplication to do so.

Note that bit-flips correspond to particular DRAM ad-
dresses, which are fixed to specific physical address. Physical
addresses, however, can be mapped to various different virtual
addresses through a page table mapping. Thus, the goal is to
force the victim to use a particular physical page.

Furthermore, if the victim resides in kernel code, the at-
tacker needs to massage kernel stacks which adds an additional
layer of complexity compared to massaging user space stacks,
since an unprivileged attacker cannot directly manipulate
(allocate and deallocate) kernel pages. While prior work has
demonstrated kernel massaging by forcing PTEs to use certain
pages, they use methods too imprecise for kernel stack mas-
saging [43]. This existing technique simply unmaps the flip-

7

Model Samsung (DDR3) Axiom (DDR3) Hynix (DDR3) Samsung (DDR4) Samsung (DDR4) Samsung (DDR4)
rowhammer-test [44] 1 0 0 - - -
rowhammerjs [16] 4 9 2 - - -
rowhammerjs (corrected addresses) 15 38 32 - - -
rohammerjs with victim flushes 7,883 11,005 7,943 - - -
TRResspass [50] - - - 947 2,976 2,134
TRResspass with victim flushes - - - 7,916 17,958 15,611

TABLE I: Comparison between prior Rowhammer techniques and our new cache-flushing technique. Since the techniques
listed in the top 4 rows are designed for DDR3, we did not run them on DDR4 DIMMs. Similarly, TRResspass is designed
for DDR4 and was not run on DDR3. Note that rowhammerjs refers to the code in its “native” directory.

vulnerable page and fills physical memory with PTEs until one
uses the recently unmapped page. For kernel stack massaging,
new threads need to be spawned to allocate kernel stacks.
Since spawning new threads is resource-intensive (relative to
PTE allocation), we cannot spray a majority of memory with
stack threads and must manipulate memory into a state that
that maximizes the odds of a limited spray using the target
page. Other prior work has demonstrated more deterministic
techniques, but uses methods exclusive to Android [47].

In this section we develop a novel technique for massaging
kernel memory by taking advantage of Linux’s physical page
allocator, the ”buddy allocator” (see Appendix A), and its per-
CPU (PCP) list system. Before describing our technique, we
provide background on the memory structures we manipulated
to achieve our result. An overview is shown in Figure 3.
Memory Zones. Within the buddy allocator, pages of memory
are organized Within the buddy allocator, in addition to being
sorted by order, free pages are also sorted by their zone.
Zones represent ranges of physical addresses. Each zone has
a particular watermark level of free pages. If the zone’s total
free memory ever drops below the watermark level, requests
are handled by the next most preferred zone. For example, a
process may request pages from ZONE NORMAL, but, if the
number of free NORMAL pages is too low, the allocator will
attempt to service the request from ZONE DMA32 [15].
Page Order. Within each zone, pages are sorted into blocks
by size, also called their order, where an order-x block contains
2x contigous pages. The allocator always attempts to fulfill
requests from the smallest order possible, but if no small order
blocks are available, a larger block will be broken in half, and
one half is used to fulfill the request [15].
Migrate-types. Pages are further organized by migrate-
type. Migrate-types determine whether the virtual-to-physical
address mapping can be changed while the page is in use.
For example, if a process controls virtual pages that map to
physical pages with the migrate-type MOVABLE, it is possible
to replace the physical page, by mapping the same virtual
address to a different physical address [28].
PCP Lists. Finally, the PCP list (also referred to as the
Page Frame Cache) [6] is essentially a cache to store recently
freed order-0 pages. Each CPU corresponds to a set of first-in-
last-out lists organized by zone and migrate-type. Whenever
an order-0 request is made, the allocator will first attempt
to pull a page from the appropriate PCP list. If the list is
empty, pages are pulled from the order-0 freelist of the buddy
allocator. When pages are freed, they are always placed in the
appropriate PCP list. Even if a contiguous higher-order block

is freed, each individual page is placed on a PCP list, and they
are merged only when they are returned from the PCP list to
the buddy allocator freelist. Thus, the system serves to quickly
fetch pages that were recently freed on the same CPU, rather
than needing direct access to the buddy allocator.

A. User Space Stack Massaging

Building on existing user space massaging techniques [6],
[27], the main goal is to free the flip-vulnerable page currently
in the attacker’s possession, and then force a victim allocation
that will use the recently freed page. In the case of stack
massaging, this means forcing a new stack allocation. The
techniques presented here follow similar steps as those done
in prior work [6], [27]. While prior works use this process to
massage pages allocated via mmap, we massage victim stacks.
Stack allocation. User space stacks are allocated upon
spawning a new process or thread, and use ZONE NORMAL,
migratetype MOVABLE memory. Additionally, even though
they typically use more than one page, the request is handled
as multiple order-0 requests, meaning pages are pulled from
a PCP List. Pages obtained from mmap calls in user space
also use NORMAL, MOVABLE memory, meaning stack pages
and the controlled flip-vulnerable page are of the same type.
Therefore, freeing the flip-vulnerable page via unmap will
place the page in the same PCP list used for stack allocation.
Massaging Steps. Now understanding Linux stack allocation,
stack massaging is performed using the following steps:
Step 1: Fodder Allocations. First, we make “fodder” alloca-
tions to account for any allocations made by the victim before
allocating the stack. It is possible the target variable does not
reside on the first page of the victim’s stack. Therefore, we
must first calculate how many pages will be used by the victim
before the victim allocates the stack page containing the target,
and allocate such number of fodder pages.
Step 2: Unmapping Pages. We then free the flip-vulnerable
page, placing it in the PCP List, and then free the fodder pages,
placing them in the same list above the flip-vulnerable page.
Step 3: Victim Allocation. Finally, we spawn the victim
process, forcing it to perform the predicted allocations, and
target stack allocation. Any allocations that occur prior to the
target allocation will remove the fodder pages from the PCP
List, forcing the stack to use the target page.
Results. This technique works with about 63% accuracy,
which is acceptable since it only needs to be done once to
mount the attack. If this step fails, we can attempt massaging
again, and expect it to succeed within two tries. We can
check for a massage failure by running the subsequent steps

8

of the attack (i.e. calling the victim containing the gadget and
hammering our aggressors) and checking for data on the cache
side-channel. If no data is observed, we re-attempt massaging.

B. Kernel-Space Stack Massaging

Targeting gadgets in the kernel similarly requires forcing
stack variables to use specific, flip-vulnerable pages. Like with
user-space stack allocation, a kernel stack is allocated upon
creation of a new thread or process, and that stack is used for
all syscalls made by that thread or process. However, unlike
user-space stacks, kernel stacks use UNMOVABLE memory,
meaning they pull pages from PCP list different from that
used by user space mmap and unmap calls. Therefore, the
attacker needs a method to force the kernel to use “user pages”
(MOVAVABLE pages) instead of “kernel pages” (UNMOV-
ABLE pages). We observe from Seaborn [43] that the kernel
does use user pages when memory is under pressure, and build
on Seaborn’s techniques to allow for a more precise memory
massaging technique that allows for massaging kernel stacks.

Fig. 4: Physical Page Stealing

Allocator Under Presure. As mentioned above, when the
zone’s total number of free pages falls below the watermark,
the next most preferred zone is used. However, as zones
include multiple migrate-types, it is possible for the freelist
of the requested migrate-type to be empty, yet have enough
total zone memory to be above the watermark. In this case,
the allocator calls a stealing function that steals pages from
given “fallback” migrate-types and converts them to the type
originally requested. As shown in Fig. 4, this function attempts
to steal the largest available block from the fallback type. For
UNMOVABLE memory, the first fallback is RECLAIMABLE
memory, and the second is MOVABLE memory.
Kernel Massaging Steps. The steps required for kernel stack
massaging are similar to those of user space stack massaging.
The key difference is that the attacker must first apply memory
pressure to force the kernel into using user pages.
Step 1: Draining Kernel Pages. As non-privileged attackers,
we cannot directly allocate UNMOVABLE pages. However,
each time an allocation is made via mmap a page table entry
(PTE) is needed to map the virtual and physical pages. Since
PTEs use kernel memory, each mmap call uses both user
and kernel memory. However, multiple PTEs can fit within
a single page, and the address of a PTE depends on its
corresponding virtual address. We need to efficiently make
allocations large enough such that each PTE needs a new
page, but small enough such that the process is not killed for

allocating too much memory. Mapping pages at 2MB aligned
addresses provides the smallest allocation size such that each
PTE allocates a new page. Such allocations are made until no
MOVABLE pages remain, using the pagetypeinfo file to
monitor the amount of remaining pages. Subsequent mappings
will use RECLAIMABLE pages for PTEs. Once the necessary
pages have been depleted, the next kernel allocation will use
the largest available MOVABLE block.

On machines without access to pagetypeinfo, we in-
stead use buddyinfo (which is world readable for all kernel
versions) and monitor the draining of MOVABLE and UN-
MOVABLE blocks together (performing Step 1 and Step 2 at
the same time), only draining order 4 or higher UNMOVABLE
blocks. (See Appendix A for a more detailed explanation of
buddyinfo compared to pagetypeinfo.
Step 2: Draining User Pages. Memory is now in a state that
will force the kernel to use the largest available MOVABLE
block. However, we need the kernel to use a specific single
page (the page containing a bit-flip). We, therefore, need to
ensure the target page resides in this block. It is advantageous
to make the largest available block as small as possible to
improve the chance that the kernel uses the target page for
its stack allocation. Thus, the next step is to drain as many
high-order free blocks as possible, without dropping the total
number of free-pages below the watermark. In our machine,
we were able to drain all blocks of order 4 or higher.
Step 3: Freeing Target Page. The goal is to free the
target page such that it resides in the largest available block.
However, freeing this page will send it to the PCP rather than
the buddy allocator freelist. Even when it is free from the
PCP, if it does not have any free buddies, it will remain in the
order-0 freelist. The freed target page needs to coalesce into
an order-4 block, such that the single largest remaining free
block contains the flip-vulnerable target page. Fortunately, as
explained in Section IV, we have already guaranteed the target
page is part of an order-4 (or larger) block (i.e. our target page
is part of a 2MiB, order-10 block). Therefore, we can free the
target page and all of its buddies to ensure it will coalesce
into the largest available block.

The last obstacle is the PCP list, since even when unmap-
ping a contiguous high-order block, all pages are placed on the
appropriate PCP list. However, the zoneinfo file shows how
many pages reside in each PCP list, and the maximum length
of each list, at any given time. Thus, additional pages can be
unmapped until the number of pages in the PCP list reaches
the maximum length (186 pages on our machines according
to zoneinfo). This forces pages to be evicted from the PCP
list and sent to the buddy allocator freelist, placing the target
page in the largest free block of MOVABLE memory.
Step 4: Allocating Kernel Stack. Having freed the target
page, and knowing the next kernel stack allocation will use
user memory, we can now force a kernel stack allocation.
However, freeing pages to force the target page out of the
PCP will have slightly alleviated memory pressure, meaning
some UNMOVABLE pages will be free. Kernel stack alloca-
tions will consume these pages, and subsequent allocations

9

Experimental Configurations SMAP pagetypeinfo THP Leakage
i7-4770,DDR3,Linux 4.17.3 OFF Readable N/A 20b/s
i7-7700, DDR4, Linux 5.4.1 ON Restricted madvise 6b/m
i9-9900K, DDR4, Linux 5.4.1 ON Restricted madvise 6b/m
i7-10700K,DDR4,Linux 5.4.0 ON Restricted madvise 6b/m

TABLE II: List of configurations used for our experiment. All
mitigations are in their default configurations.

will convert the block containing the target page into an
UNMOVABLE block. Additionally, because of the kernel’s
buddy system, the block will be split in half, with one half
being used for the kernel stack, and the other half moved to
the lower order UNMOVABLE freelist. The target page may
be in either half, and allocations must continue to be made to
ensure the target page is used for a kernel stack.

Therefore, we use a kernel stack spray, allocating many
kernel stacks until the UNMOVABLE pages are all depleted
again. We perform the kernel stack spray by spawning many
threads. Each thread can spin in an empty loop until the
spraying is done, and then be tested one-by-one by having
the thread make the victim syscall and hammering the target
variable until we observe a leak. Once the thread with the
target page is found, the other threads are released. We can
now flip a stack variable residing in the kernel.
Results. This technique has approximately 66% accuracy
with the pagetypeinfo technique (60% accuracy with
buddyinfo). We expect it to succeed within two attempts.

VI. GADGET EXPLOITATION

At this point, we have forced victim stacks in both user
space and kernel space to use flip-vulnerable addresses. We
can now flip array offset values, force a misspeculation, and
leak target values. As a proof of concept, we demonstrate end-
to-end double and triple gadget attacks on example victims
in user and kernel spaces. These examples serve to verify
the attack’s ability to leak data. The double gadget attack is
demonstrated in user-space, and the triple gadget in the kernel.
Setup. For the double gadget attack, we use a Haswell i7-
4770 CPU with Ubuntu 18.04 and Linux kernel version 4.17.3,
the default version shipped on our machine. The DRAM
used consists of a pair of Samsung DDR3 4GiB DIMMs.
For the triple gadget attacks, we use the same machine in
addition to machines with Kaby Lake i7-7700, Coffee Lake
Refresh i9-9900K, and Comet Lake i7-10700K processors.
The latter three machines each use a DDR4 8GB DIMM and
run Linux Kernel version 5.4.1, 5.4.1, and 5.4.0, respectively.
These configurations are shown in Table II. Note that the two
newer processors have additional defenses (i.e., SMAP and
restricted pagetypeinfo access) not supported by Haswell.
We demonstrate our attack even in the presence of such
defenses. KASLR is enabled on all machines. Additionally,
transparent hugepages (THPs) are set to their default setting
of being user-allocatable via an madvise syscall.

A. Double Gadget – Stack Canary Leak

In this section we demonstrate how stack canaries can be
stolen using a double gadget residing in user space code.

Stack Canaries. A stack canary is a value placed on the stack,
adjacent to the return pointer, as a defense mechanism against
buffer overflow attacks. An attacker attempting to overflow a
buffer and write to a return pointer will overwrite the canary,
which causes the program to halt. Due to their low-cost and
effectiveness at preventing buffer overflow attacks, canaries
have long been widely deployed as effective, light-weight stack
overflow defense mechanisms [10].

Even though they are randomly generated, stack canaries
of a child process belonging to a parent process will always
have the same stack canary. Thus, if a child process’s canary
is leaked, it is possible to perform a buffer overflow attack
on any child belonging to the same parent, assuming that
the code suffers from the memory corruption vulnerability.
For example, OpenSSH handles encryption through child
processes spawned by a single daemon. Leaking the canary
of any one of these child processes allows for circumventing
this defense on any other child to leak secret keys.

1 uint16_t array1, array2;
2 if(x < array1_size){
3 victim_data = array1[x]
4 z = array2[victim_data * 512];
5 }

Listing 4: Double gadget

Example Victim. The victim for this example attack lives
within a thread spawned by the attacker, and the victim con-
sists of a double gadget like the one shown in Listing 4, where
each array is of type uint16_t (Line 1). The arrays live in
memory shared by the victim and attacker, but attacks without
this requirement are possible by using a PRIME+PROBE side
channel [35]. The code is compiled such that stacks include
secret canaries and cease execution if a canary is modified.
Having the victim reside in an attacker-spawned thread allows
for user space stack massaging, but extends to any process
that can be forcibly spawned, such as OpenSSH [27].
Stealing Canaries. Due to their location at the end of the
victim stack, just past the end of target arrays, stack canaries
act as a prime target for the double gadget attack. Reading the
canary requires flipping lower-order bits of the array offset,
such that the corresponding array access points just past the
end of the array to the stack canary.

A stack canary is typically 32 to 64-bits long and stored at
the address just below the return pointer. Spectre v1 attacks
steal a single “word” of data per malicious offset value, where
a word corresponds to the innermost array’s data type. In our
victim, array1 is a uint16_t array. Each malicious value
of x points to and steals an 16 bit value, meaning the gadget
must be used four times, each with a different malicious value
to steal a 64-bit stack canary.
Target Flip. The Rowhammer bit-flip needs to push the offset
past the end of the victim array and point to the stack canary.
Since the stack canary is separated into multiple words, we
may either find a victim row with multiple bit-flips, or allow
the victim to naturally cycle through values and hammer with
the necessary timing to push the offset to different words of

10

the canary. We use the latter approach, since we observe few
rows that contain multiple flips on our machine.
Memory Templating and Massaging. We perform memory
templating as described in Section IV to find useful bit-flips.
The victim offset resides at a particular page offset within the
stack, meaning the required flip must occur at the same offset.
Memory was templated for approximately 2.5 hours to find
this specific flip. The page containing this flip is unmapped
and the victim thread is spawned, forcing the offset variable
within the victim thread to use the flip-vulnerable page.
Triggering Spectre. The victim is left to run with legal
values used for its offset, which trains the branch predictor.
We wait for the victim to set the offset to the appropriate value
corresponding to the given target word of the canary. For this
example, the victim and attack code run synchronously, but
FLUSH+RELOAD can be used to accurately monitor the exe-
cution of victim code to provide attacker synchronization [52].
We then evict the offset from the cache, forcing the gadget to
use the flipped value in a state of misspeculation. One word of
the canary is accessed and used as an offset to load data into
the cache, allowing us to use FLUSH+RELOAD to retrieve the
target. The victim value is left to change, and the hammering
is repeated to retrieve the rest of the canary.
Leakage Rate. As mentioned before, the array accesses
16 bits at a time, meaning 16 bits are leaked per flip and
instance of FLUSH+RELOAD. We observed a leakage rate of
approximately 8b/s, meaning the entire canary is leaked in
about 8 seconds with 100% accuracy.

B. Triple Gadget - Arbitrary Kernel Reads

This second example demonstrates how the triple gadget
within a kernel syscall can be used to achieve arbitrary reads
of kernel memory. This is particularly dangerous since kernel
memory is shared across all processes, meaning an attacker
with access to kernel memory can observe values handled by
the kernel for any process running on the same machine.

1 if(x < array1_size){
2 attacker_offset = array0[x]
3 victim_data = array1[attacker_offset]
4 y = array2[victim_data*512];
5 }

Listing 5: Triple Gadget
Example Victim. The example victim for this attack is
a syscall in which we inserted a triple gadget, as shown in
Listing 5. Since syscalls execute with kernel privilege, any
data within the kernel can be leaked. For this example, we
target a 10-character string within the syscall’s code that is
out of bounds from the target arrays. Additionally, the attacker
and victim share the arrays used in the triple gadget.
Memory Templating. As done in the double gadget attack,
we begin by finding a useful bit-flip. The purpose of the flip
here is to force the victim array (in the kernel) to point to
the attacker-controlled data. Thus, a specific high order bit-
flip is needed to point from the victim to region of data we
control. To reduce the time required to find the bit-flip, we
configure the victim such that it can use an array offset at any

position in the stack, by including victim variables at every
offset position. Therefore, there is no need to find a flip at a
specific offset; we only need to change a specific bit at any
aligned 64-bit word within the page.
Attacker Controlled Data. One method of controlling data
in the victim’s address space would be to simply allocate
a large memory chunk on the user space heap and fill this
chunk with the desired value. The bit-flip would then cause
the victim to point from kernel memory to our data in user
memory. However, this requires breaking Kernel Address
Space Layout Randomization (KASLR) in order to precisely
know the difference between the target kernel address and the
controlled user space address. Furthermore, Supervisor Mode
Access Prevention (SMAP) blocks the kernel form reading
user memory, and is enabled by default on the last several
generations of Intel processors [2]. Therefore, we instead inject
our data into the kernel at sets of addresses that differ from
the target-flip-address by a single bit.
SMAP Bypass. We borrow from kernel heap-spray attacks
[12], [21], which demonstrate methods of filling the kernel
heap with attacker controlled data. These techniques take
advantage of syscalls such as sendmsg or msgsnd, which
allocate kernel heap memory using kmalloc and then move
user data into these kernel addresses. To prevent these syscalls
from freeing the data before returning, attackers use the
userfaultfd syscall to stall the kernel. This syscall allows
users to define their own thread that will handle any page faults
on specified pages. When the attackers call a data-inserting
syscall (such as sendmsg) they pass arguments with N pages
worth of data, but only allocate N - 1 physical pages. When
sendmsg attempts to copy the data from user to kernel space,
it will encounter a page fault on the final page. The thread fault
handler, assigned by userfaultfd, is configured to spin in
an endless loop, leaving sendmsg stuck, after having copied
N - 1 pages of user data into kernel memory.
Stack Data Insertion. While the above method is useful
for inserting attacker-controlled data into the kernel’s heap,
heap-insertion is not useful for SpecHammer since kernel heap
addresses will never have only one bit of difference from
kernel stack addresses. However, numerous syscalls, including
sendmsg, take a user defined message header which is placed
on the kernel stack. To ensure that this inserted value will land
on an address that is one bit-flip away from the flip-target, we
spawn many threads that all use sendmsg to insert kernel
stack data, giving high probability (87%) of an address match.
Controlling Page Offsets. The only remaining issue is the
offset within the page. Stack offsets for kernel syscalls are
always fixed and we need to insert data into an address with a
page offset that matches that of our flip-target. Fortunately for
the attacker, there are numerous syscalls (e.g. sendmsg,
recvmsg, setxattr, getxattr, msgsnd) that al-
low for writing up to 256 bytes of the kernel stack, giving
a range of offset options. Additionally, these syscalls are
called from other syscalls as well, (e.g.socket, send,
sendto, recv, sendmmsg, recvmmsg) and each of
these use a varying amount of stack space before calling the

11

previously listed syscalls, essentially allowing the attacker to
“slide” the position of the inserted data up and down the stack.

As an example, we find that the target-variable of the
example gadget presented in Section VII-B has a page offset
of 0xd20 (when it is called during the spawning of a new
thread) and sendmmsg can be used to control data on the
kernel stack from 0xcf0 to 0xd70. Thus, the triple gadget
attack can work by pointing from a victim kernel address to an
attacker controlled kernel address, allowing the attack to work
in the presence of SMAP. Since KASLR only randomizes the
kernel’s base address, the difference between these addresses
remains constant, thereby neutralizing KASLR.
Kernel Stack Massaging. Next, we run the kernel stack
massaging technique from Section V-B, forcing the syscall to
use the flip-vulnerable page for its array offset. We allocate
numerous threads as part of the stack spray, and there is a
possibility none of the kernel stacks contain the flip-vulnerable
page. Therefore, we check each thread for the target page,
and if the page is not found, we repeat the templating and
massaging steps until a target page lands within a kernel stack.
Triggering Spectre. Finally, the thread containing the target
page makes the syscall containing the victim gadget, which
runs repeatedly with a loop of of legal offset values in order
to train the branch predictor. The offset value is occasionally
hammered and evicted from the cache, causing the inner most
array to point to user data in a state of misspeculation. The
FLUSH+RELOAD side channel is used to confirm the target
secret (in this case, the value of the victim’s string) has been
correctly leaked. We then modify the attacker-controlled data
to point to any secret value within the attacker’s address space,
and the hammering is repeated to leak the next target value.
Offline Phase Performance When running on the Haswell
machine, in which SMAP is disabled and pagetypeinfo
is unrestricted, the time taken to find pages with useful flips
and land a such a page in the kernel is 34 minutes. While
our new buddyinfo and SMAP bypass techniques present
slightly reduced accuracies, they conversely reduce the time
needed to find flips and land a useful page. The buddyinfo
technique relaxes the requirements on draining user pages (to
only draining order 4 or larger blocks, rather than draining all
blocks), meaning each massaging attempt takes less time.

Furthermore, the SMAP technique allows a range of bits
to be useful, since we need any flip that points from (victim)
kernel stack to (our controlled) kernel stack. These two regions
of memory are much closer together the case of a kernel stack
victim and controlled user space region, meaning we can make
a selection among many lower order bits (bits 5 through 28)
rather than being forced to flip the only high-order bit that
points from kernel space to user space (bit 45). Thus, while
this technique introduces another probabilistic element (with
87% accuracy) the time needed to find a single useful flip
to perform the attack is reduced. Consequently, the attack
requires an average 9 minutes on average to find a useful flip
and land it in the kernel across all machines.
Leakage Rate. array1 is of type uint8_t, meaning
each misspeculation leaks 8 bits of data. After performing

the prerequisite templating and massaging steps, the leakage
occurs at a rate of 16 to 24b/s on DDR3. We leaked the
target string with 100% accuracy. When running on DDR4,
multi-sided hammering is required, which requires more time
per hammering round, consequently reducing the leakage rate
to about 4 to 19b/min (6b/min on average), also with 100%
accuracy on the three DDR4 machines listed in Table II.

VII. GADGETS IN THE LINUX KERNEL

To understand the impact the SpecHammer relaxation has
on the number of exploitable gadgets in real-world code, we
run a gadget search tool, Smatch [29], on the Linux kernel.

A. Gadget Search.

Smatch. Smatch was initially designed for finding bugs in
the Linux kernel. However, after Spectre was discovered, a
check-spectre function was added, which searches for
gadgets. It searches for segments of code in which a nested
array access occurs after a conditional statement, and the
offset into the array is controlled by an unprivileged user.
It additionally checks if the nested accesses occur within the
maximum possible speculation window, and if the accesses use
an array index nospec macro, which sanitizes array offsets
by bounding them to a specified size.
Tool Modification. We modified the tool to remove the
condition of an attacker controlled offset, and searched only
for gadgets in which the attacker does not control the offset.
In addition, we added a function to search for triple gadgets
as well, which checks if the value of a nested array access is
used as an offset for a third array access.
Results. When running the unmodified check-spectre
function on the Linux kernel 5.6, we find about 100 double
gadgets, and only 2 triple gadgets. Modifying the function to
search for SpecHammer gadgets leads it to report about 20,000
double gadgets, and about 170 triple gadgets.
Bypassing Taint Tracking. Such a large number of potential
gadgets exposes more holes for Spectre attacks on sensitive,
real-world code. Furthermore, oo7 [51], which is the only
defense that can efficiently mitigate all forms of Spectre [4],
does not work against SpecHammer gadgets. This defense
identifies nested array access that use an untrusted array offset
value (i.e. a value coming from an unprivileged user). Any
gadgets using such an offset are considered “tainted,” and are
prevented from performing out of bounds memory accesses.
However, since the newly discovered gadgets use variables that
cannot be directly modified by attackers, they are considered
trustworthy, and would go unmitigated by oo7.
Additional Gadgets. Even after making the modification to
smatch to include gadgets without attacker-controlled offsets,
we observed that smatch was still unable to detect all potential
SpecHammer gadgets, demonstrating that existing gadget de-
tection tools are not sufficient for finding all exploitable code.

B. Kernel Gadget Exploit

To understand the nature of gadgets that remained unde-
tected by smatch, we chose to explore the kernel source

12

code by hand to identify potential gadgets that may be newly
exploitable with the flexibility granted by Rowhammer. For
example, in addition to manipulating array offsets, Rowham-
mer bit-flips allow for the indirect modification of pointers
as well. Modifying a single struct pointer can lead to a
chain of pointer dereferences ending with secret-dependent
cache accesses. This points to a new type of gadget compared
to those presented in Spectre [25], as it relies on pointer
deferences rather than nested array accesses. One particular
example of this lies in the kernel’s page_alloc.c file.

Fig. 5: alloc context struct pointer
page alloc.c This file contains the code used for all
physical page allocation. The get_page_from_freelist
function in particular contains the SpecHammer gadget; a
simplified version with only the relevant code lines is pre-
sented in Listing 6. Note that the gadget does not contain
cosecutive array accesses, but rather dereferences consecutive
struct pointers, and uses the result for an array access. The
allocation_context (ac) struct pointer, shown in Fig-
ure 5, is particularly important, as many variables used in the
function are obtained from this pointer.

1 get_page_from_freelist{
2 struct alloc_context *ac;
3 struct zoneref *z = ac->preferred_zoneref;
4 struct zone *zone;
5

6 for(zone=z->zone;zone;z=find_next_zone(z,ac->
zone_highidx);

7 zone=z->zone){
8
9 preferred_zone = ac->preferred_zoneref;

10 idx = preferred_zone->classzone_idx;
11
12 z->lowmem_reserve[idx];
13 }
14 }

Listing 6: Code Gadget for the double gadget attack
Forcing Misspeculation By manipulating the value of ac to
point to a region of attacker-controlled code, it is possible
to control all variables obtained from an ac dereference,
and control the victim’s execution flow. More specifically, an
attacker run the function normally, teaching the predictor that
the for loop at Listing 6, Line 6 will be entered. Then, ac
can be modified by hammering such that the dereferences at
Lines 3 (z = ac->preferred_zoneref) and 6 (zone
= z->zone) set zone equal to NULL. This triggers a mis-
speculation, since the for loop should terminate immediately,
but will actually begin its first iteration due to the prior
training. Furthermore, ac has been set such that during this
misspeculation, the chain of dereferences at Listing 6 Lines
9 and 10 causes idx to equal secret data, causing a secret-
dependent access at Line 12 (lowmem_reserve[idx]),
recoverable by cache side channel.
Results. To empirically verify this behavior, we instrumented
page alloc.c file to flip bits as needed, and found it is possible

to manipulate the function’s control flow and cause a misspec-
ulation that leaks kernel data. We recovered an 8-bit character
inserted in the kernel code that is normally out of range of
the manipulated array, by inserting code that uses a FLUSH+
RELOAD channel. This can be replaced with PRIME+PROBE
to retrieve secrets without modifying page_alloc.

VIII. MITIGATIONS

Spectre. Developing a defense focused on the Spectre aspects
is likely the more difficult option. While other variants of
Spectre received effective and efficient mitigations [4], [30],
[46], Spectre v1 was seen as more as an inherent security flaw
caused by branch prediction with no simple solution.

Taint tracking, the only defense previously known to protect
against all forms of Spectre v1 [4], [51], is thwarted by the
new combined attack, as it relies on a Spectre limitation not
present in the combined attack. Other defenses [5], [38], [39]
designed to protect against Spectre v1 provide incomplete
protection, working only in specific cases, and often come
at a prohibitively high performance cost [4].
Rowhammer. For Rowhammer, on the other hand, numer-
ous hardware and software defenses have been developed to
prevent or detect bit-flips, beginning with PARA [23]. PARA
randomly refreshes rows, giving more weight to rows with
repeated accesses. However, this does not guarantee protecting
rows that are about to flip, but only grants a high probability
of refresh. For our triple-gadget attack that requires a single
bit-flip, PARA does not guarantee protection.

A defense similar to PARA, target row refresh (TRR) does
guarantee a refresh whenever two aggressor rows pass a
certain activation threshold. However, TRResspass [14] has
recently shown how bit-flips can be obtained despite TRR by
performing scattered aggressor row accesses. Furthermore, by
applying this technique, DDR4 was found to be even more
susceptible than DDR3 to bit-flips [22].

Another common hardware defense against bit-flips is error
correcting codes (ECC). Initially designed to catch bit-flips
induced by natural errors, these functions are able to correct
single flips, and detect up to two flips, within a given row.
However, ECCploit [9] demonstrated a timing side-channel
produced by single-flip corrections, that allows attackers to
find rows containing multiple flips. By simulatenously flipping
multiple bits, Rowhammer attacks can go undetected by ECC,
making ECC an ineffective defense.

IX. CONCLUSION

We have demonstrated how Spectre and Rowhammer can
be combined to circumvent the only defense believed to work
against all forms of Spectre v1. Furthermore, we found the
number of potential gadgets in the Linux kernel increases
drastically with this new attack. Proof-of-concept gadgets
show the attack’s ability to leak data from user and kernel
space victims. In future work we seek to understand the effect
of relaxing gadget requirements on other sensitive code.

13

REFERENCES

[1] Z. B. Aweke, S. F. Yitbarek, R. Qiao, R. Das, M. Hicks, Y. Oren,
and T. Austin, “Anvil: Software-based protection against next-generation
rowhammer attacks,” ACM SIGPLAN Notices, vol. 51, no. 4, pp. 743–
755, 2016.

[2] A. Baumann, “Hardware is the new software,” in 16th Workshop on Hot
Topics in Operating Systems. ACM, 2017, pp. 132–137.

[3] E. Bosman, K. Razavi, H. Bos, and C. Giuffrida, “Dedup est machina:
Memory deduplication as an advanced exploitation vector,” in 2016
IEEE symposium on security and privacy (SP). IEEE, 2016, pp. 987–
1004.

[4] C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. Von Berg, P. Ortner,
F. Piessens, D. Evtyushkin, and D. Gruss, “A systematic evaluation of
transient execution attacks and defenses,” in 28th {USENIX} Security
Symposium ({USENIX} Security 19), 2019, pp. 249–266.

[5] C. Carruth. (2018) Rfc: Speculative load haredning (a spectre variant #1
mitigation.

[6] A. Chakraborty, S. Bhattacharya, S. Saha, and D. Mukhopadhyay,
“Explframe: exploiting page frame cache for fault analysis of block
ciphers,” in 2020 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2020, pp. 1303–1306.

[7] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai, “Sgxpectre:
Stealing intel secrets from sgx enclaves via speculative execution,” in
2019 IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE, 2019, pp. 142–157.

[8] L. Cojocar, J. Kim, M. Patel, L. Tsai, S. Saroiu, A. Wolman, and
O. Mutlu, “Are we susceptible to rowhammer? an end-to-end method-
ology for cloud providers,” in 2020 IEEE Symposium on Security and
Privacy (SP). IEEE, 2020, pp. 712–728.

[9] L. Cojocar, K. Razavi, C. Giuffrida, and H. Bos, “Exploiting correcting
codes: On the effectiveness of ecc memory against rowhammer attacks,”
in 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 2019,
pp. 55–71.

[10] C. Cowan, F. Wagle, C. Pu, S. Beattie, and J. Walpole, “Buffer overflows:
Attacks and defenses for the vulnerability of the decade,” in Pro-
ceedings DARPA Information Survivability Conference and Exposition.
DISCEX’00, vol. 2. IEEE, 2000, pp. 119–129.

[11] F. de Ridder, P. Frigo, E. Vannacci, H. Bos, C. Giuffrida, and
K. Razavi, “SMASH: Synchronized Many-sided Rowhammer Attacks
From JavaScript,” in USENIX Sec, Aug. 2021. [Online]. Available:
Paper=https://download.vusec.net/papers/smash sec21.pdfWeb=https:
//www.vusec.net/projects/smashCode=https://github.com/vusec/smash

[12] L. Dixon, “Using userfaultfd,” 2016. [Online]. Available: https:
//blog.lizzie.io/using-userfaultfd.html

[13] P. Frigo, C. Giuffrida, H. Bos, and K. Razavi, “Grand pwning unit:
Accelerating microarchitectural attacks with the gpu,” in 2018 IEEE
Symposium on Security and Privacy (SP). IEEE, 2018, pp. 195–210.

[14] P. Frigo, E. Vannacc, H. Hassan, V. Van Der Veen, O. Mutlu, C. Giuf-
frida, H. Bos, and K. Razavi, “Trrespass: Exploiting the many sides of
target row refresh,” in 2020 IEEE Symposium on Security and Privacy
(SP). IEEE, 2020, pp. 747–762.

[15] M. Gorman, “Understanding the linux virtual memory manager,” IEEE
Transactions on Software Engineering, 2004.

[16] D. Gruss, “Program for testing for the dram ”rowhammer” problem
using eviction,” May 2017. [Online]. Available: https://github.com/
IAIK/rowhammerjs

[17] D. Gruss, M. Lipp, M. Schwarz, D. Genkin, J. Juffinger, S. O’Connell,
W. Schoechl, and Y. Yarom, “Another flip in the wall of rowhammer
defenses,” in 2018 IEEE Symposium on Security and Privacy (SP).
IEEE, 2018, pp. 245–261.

[18] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer. js: A remote
software-induced fault attack in javascript,” in International conference
on detection of intrusions and malware, and vulnerability assessment.
Springer, 2016, pp. 300–321.

[19] M. Guarnieri, B. Köpf, J. F. Morales, J. Reineke, and A. Sánchez,
“Spectector: Principled detection of speculative information flows,” in
2020 IEEE Symposium on Security and Privacy (SP). IEEE, 2020, pp.
1–19.

[20] J. Horn. (2018) speculative execution, variant 4: speculative store
bypass. [Online]. Available: https://bugs.chromium.org/p/project-zero/
issues/detail?id=1528

[21] invictus, “Linux kernel heap spraying / uaf,”
2017. [Online]. Available: https://invictus-security.blog/2017/06/15/
linux-kernel-heap-spraying-uaf/

[22] J. S. Kim, M. Patel, A. G. Yağlıkçı, H. Hassan, R. Azizi, L. Orosa,
and O. Mutlu, “Revisiting rowhammer: An experimental analysis of
modern dram devices and mitigation techniques,” in 2020 ACM/IEEE
47th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 2020, pp. 638–651.

[23] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing them:
An experimental study of dram disturbance errors,” ACM SIGARCH
Computer Architecture News, vol. 42, no. 3, pp. 361–372, 2014.

[24] V. Kiriansky and C. Waldspurger, “Speculative buffer overflows: Attacks
and defenses,” arXiv preprint arXiv:1807.03757, 2018.

[25] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher et al., “Spectre attacks: Exploit-
ing speculative execution,” in 2019 IEEE Symposium on Security and
Privacy (SP). IEEE, 2019, pp. 1–19.

[26] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-Ghazaleh,
“Spectre returns! speculation attacks using the return stack buffer,” in
12th {USENIX} Workshop on Offensive Technologies ({WOOT} 18),
2018.

[27] A. Kwong, D. Genkin, D. Gruss, and Y. Yarom, “Rambleed: Reading
bits in memory without accessing them,” in 2020 IEEE Symposium on
Security and Privacy (SP). IEEE, 2020, pp. 695–711.

[28] C. Lameter and M. Kim, “Page migration,” 2016. [Online]. Available:
https://www.kernel.org/doc/Documentation/vm/page migration

[29] J. LCorbet, “Finding spectre vulnerabilities with smatch,” 2018.
[Online]. Available: https://lwn.net/Articles/752408/

[30] M. Linton and P. Parseghian, “More details about
mitigations for the cpu speculative execution issue,”
2018. [Online]. Available: https://security.googleblog.com/2018/01/
more-details-about-mitigations-for-cpu 4.html

[31] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn,
S. Mangard, P. Kocher, D. Genkin et al., “Meltdown: Reading kernel
memory from user space,” in 27th {USENIX} Security Symposium
({USENIX} Security 18), 2018, pp. 973–990.

[32] M. Lipp, M. Schwarz, L. Raab, L. Lamster, M. T. Aga, C. Maurice, and
D. Gruss, “Nethammer: Inducing rowhammer faults through network
requests,” in 2020 IEEE European Symposium on Security and Privacy
Workshops (EuroS&PW). IEEE, 2020, pp. 710–719.

[33] G. Maisuradze and C. Rossow, “ret2spec: Speculative execution using
return stack buffers,” in Proceedings of the 2018 ACM SIGSAC Confer-
ence on Computer and Communications Security, 2018, pp. 2109–2122.

[34] O. Mutlu and J. S. Kim, “Rowhammer: A retrospective,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 39, no. 8, pp. 1555–1571, 2019.

[35] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and countermea-
sures: the case of aes,” in Cryptographers’ track at the RSA conference.
Springer, 2006, pp. 1–20.

[36] C. Percival, “Cache missing for fun and profit,” 2005.
[37] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard,

“{DRAMA}: Exploiting {DRAM} addressing for cross-cpu attacks,”
in 25th {USENIX} security symposium ({USENIX} security 16), 2016,
pp. 565–581.

[38] F. Pizlo, “What spectre and meltdown mean for we-
bkit,” 2018. [Online]. Available: https://webkit.org/blog/8048/
what-spectre-and-meltdown-mean-for-webkit/

[39] T. C. Projects, “Site isolation,” 2018. [Online]. Available: https:
//www.chromium.org/Home/chromium-security/site-isolation

[40] K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giuffrida, and H. Bos,
“Flip feng shui: Hammering a needle in the software stack,” in 25th
{USENIX} Security Symposium ({USENIX} Security 16), 2016, pp. 1–
18.

[41] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina,
T. Prescher, and D. Gruss, “Zombieload: Cross-privilege-boundary data
sampling,” in Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, 2019, pp. 753–768.

[42] M. Schwarz, M. Schwarzl, M. Lipp, J. Masters, and D. Gruss, “Net-
spectre: Read arbitrary memory over network,” in European Symposium
on Research in Computer Security. Springer, 2019, pp. 279–299.

[43] M. Seaborn and T. Dullien, “Exploiting the dram rowhammer bug to
gain kernel privileges,” Black Hat, vol. 15, p. 71, 2015.

14

Paper=https://download.vusec.net/papers/smash_sec21.pdf Web=https://www.vusec.net/projects/smash Code=https://github.com/vusec/smash
Paper=https://download.vusec.net/papers/smash_sec21.pdf Web=https://www.vusec.net/projects/smash Code=https://github.com/vusec/smash
https://blog.lizzie.io/using-userfaultfd.html
https://blog.lizzie.io/using-userfaultfd.html
https://github.com/IAIK/rowhammerjs
https://github.com/IAIK/rowhammerjs
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://invictus-security.blog/2017/06/15/linux-kernel-heap-spraying-uaf/
https://invictus-security.blog/2017/06/15/linux-kernel-heap-spraying-uaf/
https://www.kernel.org/doc/Documentation/vm/page_migration
https://lwn.net/Articles/752408/
https://security.googleblog.com/2018/01/more-details-about-mitigations-for-cpu_4.html
https://security.googleblog.com/2018/01/more-details-about-mitigations-for-cpu_4.html
https://webkit.org/blog/8048/what-spectre-and-meltdown-mean-for-webkit/
https://webkit.org/blog/8048/what-spectre-and-meltdown-mean-for-webkit/
https://www.chromium.org/Home/chromium-security/site-isolation
https://www.chromium.org/Home/chromium-security/site-isolation

[44] M. Seaborne, “Program for testing for the dram ”rowhammer”
problem,” Aug 2015. [Online]. Available: https://github.com/google/
rowhammer-test

[45] A. Tatar, R. K. Konoth, E. Athanasopoulos, C. Giuffrida, H. Bos,
and K. Razavi, “Throwhammer: Rowhammer attacks over the net-
work and defenses,” in 2018 {USENIX} Annual Technical Conference
({USENIX}{ATC} 18), 2018, pp. 213–226.

[46] P. Turner, “Retpoline: a software contruct for preventing branch-target-
injection,” 2018. [Online]. Available: https://support.google.com/faqs/
answer/7625886

[47] V. van der Veen, Y. Fratantonio, M. Lindorfer, D. Gruss, C. Maurice,
G. Vigna, H. Bos, K. Razavi, and C. Giuffrida, “Drammer: Deterministic
rowhammer attacks on mobile platforms,” in CCS, 2016.

[48] VandySec, “rowhammer-armv8,” Apr 2019. [Online]. Available:
https://github.com/VandySec/rowhammer-armv8

[49] K. Viswanathan, “Disclosure of hardware prefetcher con-
trol on some intel processors,” 2014. [Online]. Avail-
able: https://software.intel.com/content/www/us/en/develop/articles/
disclosure-of-hw-prefetcher-control-on-some-intel-processors.html

[50] vusec, “trresspass,” Mar 2020. [Online]. Available: https://github.com/
vusec/trrespass

[51] G. Wang, S. Chattopadhyay, I. Gotovchits, T. Mitra, and A. Roychoud-
hury, “oo7: Low-overhead defense against spectre attacks via program
analysis,” IEEE Transactions on Software Engineering, 2020.

[52] Y. Yarom. (2016) Mastik: A micro-architectural side-channel toolkit.
[Online]. Available: https://cs.adelaide.edu.au/∼yval/Mastik/Mastik.pdf

[53] Y. Yarom and K. Falkner, “Flush+reload: A high resolution, low noise l3
cache side-channel attack,” in 23rd USENIX Security Symposium, 2014.

[54] Z. Zhang, Z. Zhan, D. Balasubramanian, X. Koutsoukos, and G. Karsai,
“Triggering rowhammer hardware faults on arm: A revisit,” in ASHES,
2018.

[55] Z. Zhang, Y. Cheng, Y. Zhang, and N. Surya, “Ghostknight: Breaching
data integrity via speculative execution,” in arXiv, 2020.

APPENDIX

Fig. 6: Physical to DRAM map for Ivy Bridge/Haswell
(taken from [37]).

A. Reverse Engineering Virtual to DRAM Address Mapping

The following section explains the techniques used to obtain
the virtual to DRAM address mapping needed for double-
sided Rowhammer. These techniques manipulate the Linux
buddy allocator to first obtain a virtual to physical address
mapping [27]. Then, they use a timing side-channel to de-
termine which physical addresses correspond to rows in the
same bank [37], reverse engineering the physical to DRAM
address mapping. However, these techniques relied on the
use of the pagetypeinfo file for memory manipulation,
which has since been restricted to high privileged users. We
therefore develop a new technique using the world-readable
buddyinfo file.
Buddy Allocator. The buddy allocator is Linux’s system
for handling physical page allocation. It consists of lists of
free pages organized by order and migratetype. The order
is essentially the size of a free block of memory. Typically,
requests for pages from user space (for example, via mmap)
are served from order-0 pages. Even if the user requests

many pages, she will likely be served with a non-contiguous
block of fragmented pages. If there are no free blocks of the
requested size, the smallest available free block is split into
two halves, called buddies, and one buddy is used to serve
the request, while the other is placed in the free list of the
order one less than its original order. When pages return to the
freelist, if their corresponding buddy is also in the freelist, the
two pages are merged and moved to a higher-order freelist.
Migratetypes essentially determine whether a page is meant
to be used in user space (MOVABLE pages) or kernel space
(UNMOVEABLE pages) [15].
pagetypeinfo & buddyinfo files. The pagetypeinfo file
shows how many free blocks are available for each order and
migratetype. While previous techniques [27], [47] used this
file to track the state of free memory, pagetypeinfo has
since been made unreadable for low-privilege users. However,
a similar file, called buddyinfo shows how many total free
blocks are available for each order, combining the number
of kernel and user pages. Since pagetypeinfo has been
restricted from attacker access, we present a new technique
that uses buddyinfo for obtaining contiguous blocks of
memory.
Obtaining Contiguous Memory Blocks. In order to
control sets of contiguous DRAM rows, we must first obtain a
large chunk of contiguous physical memory. For the eventual
memory massaging step, described in Section V, the bit-flip
needs to reside in a contiguous block of memory at least
16 pages long. Additionally, as we will see in the following
paragraph, a 2MiB block will be helpful in obtaining physical
addresses. However, if we request a 2MiB block via mmap, the
allocator will service this request via fragmented, rather than
contiguous, memory. Therefore, to obtain a 2MiB contiguous
block, we first allocate enough memory to drain all smaller
sized (1MiB or smaller) user blocks, forcing the allocator to
supply us with a contiguous 2MiB block.
Using the buddyinfo file. However, with buddyinfo we
can only see the combined total of user and kernel blocks
remaining, but need to know when the number of 1MiB (and
lower) user blocks is worth less than 2MiB of memory. To
bypass this issue, we allocate blocks while monitoring the
remaining total amount via buddyinfo. By placing our
allocations at consecutive virtual addresses, we ensure our
allocations will mostly use user blocks, since kernel blocks for
new page table allocations will rarely be needed. Therefore we
can continue to drain blocks and watch the total 1MiB block
count decrease until it hits a minimum value and increases
again. This behavior signifies there were no remaining user
blocks to fulfill the request, requiring the 1MiB user block free
list to be refilled. The observed minimum value is therefore the
number of free 1MiB kernel pages, allowing us to subtract this
value from the total value at any given moment to obtain the
number of free 1MiB user pages.

We run the drain process again, subtracting the number of
kernel pages, until the remaining 1MiB user pages equals 0.
We can use the same process to drain the smaller blocks until
they consist of less than 2MiB worth of memory. Finally,

15

https://github.com/google/rowhammer-test
https://github.com/google/rowhammer-test
https://support.google.com/faqs/answer/7625886
https://support.google.com/faqs/answer/7625886
https://github.com/VandySec/rowhammer-armv8
https://software.intel.com/content/www/us/en/develop/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors.html
https://software.intel.com/content/www/us/en/develop/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors.html
https://github.com/vusec/trrespass
https://github.com/vusec/trrespass
https://cs.adelaide.edu.au/~yval/Mastik/Mastik.pdf

we request two 2MiB chunks of memory via mmap. Since
the allocator does not have enough smaller order blocks
to fulfill this request with fragmented pages, it is forced
to supply a contiguous 2MiB chunk. Our approach is able
to produce 2MiB pages with the same 100% accuracy of
pagetypeinfo . Since the additional step of calculating
the number of kernel blocks needs to be performed only once
during the entire attack (not once per massaging attempt),
using the buddyinfo technique incurs a negligible time cost.

Physical Addresses. To obtain the virtual to physical memory
mapping, we use technique presented in [27]. Having already
obtained a 2MiB block, we can learn the lowest 21 bits of a
physical address by finding the block’s offset from an aligned
address. We obtain this offset by timing accesses of multiple
addresses to learn the distances between addresses on the same
bank. By identifying the distance for each page within the
the block, we can retrieve the offset. With the mapping from
virtual to physical to DRAM addresses, we can sort virtual
addresses into aggressor and victim addresses corresponding
to three consecutive DRAM rows.

DRAM Addresses. Next, we require the physical to DRAM
address mapping. We can obtain it using Pessl’s timing side-
channel [37]. This technique takes advantage of DRAM banks’
rowbuffer. Upon accessing memory, charges are pulled from
the accessed row into a rowbuffer. Subsequent accesses read
from this buffer, reducing access latency. All rows that are
part of the same bank share a single rowbuffer. Therefore,
consecutive accesses to different rows within the same bank
will have increased latency, since each access needs to over-
write the rowbuffer. By accessing pairs of physical addresses
and categorizing them into fast and slow accesses, an attacker
can learn whether pairs lie in the same bank. Attackers can
compare the bits of enough addresses that lie in the same bank
to retrieve the mapping from physical addresses to DRAM.

Pessl et. al. [37] present the mapping function for numerous
processors, such as the Haswell mapping (shown in Figure 6).
Therefore, for attacks on Haswell, we can use this mapping as
is. For newer processors, we run Pessl’s attack (as provided in
[50]) on several machines, and obtain the mapping for Kaby
Lake, Coffee Lake, and Comet Lake processors.

Contiguous Blocks on DDR4. We previously explained the
need for 2MiB blocks when hammering on a Haswell machine,
since the physical to DRAM mapping uses the lower 21 bits.
Newer processors use up to bit 24 for their mapping when a
machine uses two channels with two DIMMs on each channel
(4-DIMM configurations). Up to bit 22 is used for two-DIMM
configurations and up to bit 21 for one-DIMM configurations
[11]. These newer processors are designed designed to use
DDR4. DDR4 Rowhammer techniques such as TRRespass
[14], use hugepages to obtain 2MB blocks which are sufficient
for one-DIMM configurations. For two-DIMM configurations,
memory massaging techniques can be used to obtain 4MB
contiguous blocks [11]. For 24-bit configurations, accuracy
is reduced by the number of unknown bits, meaning 1/4
reduction of flips in the worst case of 24 bits.

Rowhammer.js Without cache flushes With cache flushes
hits 105,530,250 1
misses 377,915 107,347,967
%flips on misses 100% 100%
flips 12 2806

TABLE III: The effect of flushing victim addresses on
Rowhammer.js

B. Modifications Made to Rowhammer Code

Rowhammer.js Modifications The code listings in this
section show the changes we made to existing Rowhammer
repositories to prevent the cache from masking bit-flips. List-
ing 7 shows the changes made to Rowhammer.js’s native
code. The first change on lines 530 and 531 fix a simple
error regarding virtual and physical addresses. The original
code passes virtual addresses into the get_dram_mapping
function, while this function is designed to use physical
addresses. The second modification occurs in lines 560 to 573.
In these additional lines of code, we flush any victim rows
immediately after they are initialized with test values. This
ensures that when we later read these rows to check for flips,
we will read directly from DRAM and not the cache.
TRRespass Modifications Listing 8 shows the modifications
made to TRRespass. We found that cache flushes needed to be
added to multiple regions of code to minimize the number of
hits that occur when checking for flips. Data is first initialized
in the init_stripe function starting at line 386. This
function is called once during a TRRespass session to initialize
the entire region of victim data. While many rows are naturally
evicted from the cache due to initialization over a region too
large to fit in the cache all at once, many initialized values
do still remain in the cache in the original code. We therefore
added flushes after every write to memory.

TRRespass then checks for flips using the scan_stripe
function starting in line 571. When finding a flip (if res is
non-zero), the flipped data is reinitialized to its initial value.
However, there may still be some data within the same cache
line that has not yet been checked. We therefore flush the
cache to ensure checked data is pulled from DRAM and not
the cache.

After completing a hammering session, TRRespass calls
fill_stripe which refills victim rows with initial data.
Similar to the init_stripe function, we must flush this
initial data from the cache.

Finally, while the hPatt_2_str function (starting at line
134) does not directly interact with victim data, we found that
its memset call does pull victim data into the cache. This is
likely due to the processor’s buddy cache system, which pulls
adjacent cache-lines together, even when only one is accessed,
to improve performance. We therefore flush this memset data
as well.

C. Verifying the Effects of Caching.

In order to confirm that the reads were in fact reading cached
data, we modified the existing code to measure the number of
cache hits and misses that occur per victim address check. We

16

.....
526 if(OFFSET2 > =0)
527 second_row_page = pages_per_row[row_index+2].at(OFFSET2);
528 if (
529 //******fixed bug***********
530 get_dram_mapping((void*)(GetPageFrameNumber(pagemap,first_row_page)*0x1000))
531 !=
532 get_dram_mapping((void*)(GetPageFrameNumber(pagemap,second_row_page)*0x1000))
533 //************************
534)

{

....
556

557 #ifdef FIND_EXPLOITABLE_BITFLIPS
558 for(size_t tries = 0; tries < 2; ++tries)
559 #endif
560 {
561 //******cache flush victim***********
562 int32_t offset = 1;
563 for (; offset < 2; offset += 1)
564 for (const uint8_t* target_page8 :
565 pages_per_row[row_index+offset])
566 {
567 const uint64_t* target_page = (const uint64_t*)
568 target_page8;
569 for (uint32_t index = 0; index < (512);
570 ++index) {
571 uint64_t* victim_va = (uint64_t*)
572 &target_page[index];
573 asmvolatile("clflush(%0)"::"r"(victim_va):%"memory");

}
}

34 //**********************************
35 hammer(first_page_range, second_page_range, number_of_reads);
36
37 }

Listing 7: Rowhammer.js Modifications

TRRespass Without cache flushes With cache flushes
hits 23,914,118 14,078
misses 2,081,626,490 2,105,526,350
%flips on misses 100% 100%
flips 431 4795

TABLE IV: The effect of flushing victim addresses on TR-
Respass

do so using by timing each access and marking fast accesses
(less than 100 cycles) as cache hits and all slower accesses
as cache misses. Since accesses pull entire cache lines into
the cache, and each line is 64B, we only measure the first
access per cache line, and all other accesses within the same
set are labeled according to the timing of their first address.
Additionally, we measured the number of hits and misses
observed when extra cache flushes were added to ensure we
read victim data from DRAM rather than the cache. Finally, we
disabled the cache prefetcher [49], since otherwise, accessing
a single set would pull additional sets into the cache and
make subsequent accesses appear to be cache hits even if they
had been flushed prior to hammering. For the DDR3 tests,
we used a Haswell i7-4770 processor running Linux kernel
4.17.3, and Samsung DDR3 4GB DIMM. For DDR4 we used
a Coffee Lake i7-8700K processor running Linux kernel 5.4.0

and Samsung DDR4 8GB DIMM. The experiments were run
for 2 hours each. The data was initialized with a 0-1-0 stripe
pattern for all experiments.

The results are shown in Table III (DDR3) and Table IV
(DDR4). The DDR3 test was based on Rowhammer.js [16] and
DDR4 on TRRespass [50] as they are the latest Rowhammer
repositories for their respective type of DIMM. For both tests
100% of the flips were observed on cache miss accesses,
supporting our observation that the cache masks bit-flips. With
the DDR3 tests, neglecting to use victim cache flushes results
in a large majority (99.64%) of the flip-checks reading cached
data. A non-negligible 377,915 accesses do occur on cache
misses, which is likely why the original code was able to
observe any flips at all. However, once the cache flushes
are added, nearly all the accesses directly read from DRAM,
revealing a drastic number of flips that had been previously
masked by cache, resulting in a 233x increase in flips.

As for the DDR4 results, the unmodified code already had
a large number of misses. The reason is that a larger region of
data is initialized all at once before being hammered, which
results in much of the data being evicted from the cache due
to the cache’s limited size. However, the additional flushes
were able to reduce the number of hits by 99.94%, drastically
reducing the amount of bit flips masked by the cache.

17

.....
134 char *hPatt_2_str(HammerPatter * h_patt, int fields)
135 {
136 static char patt_str[256];
137 char *dAddr_str;
138

139 memset(patt_str, 0x00, 256);
140 //******new cache flushes******
141 clflush(patt_str);
142 clflush(patt_str + 64);
143 clflush(patt_str + 128);
144 clflush(patt_str + 192);
145 clflush(patt_str + 256);
146 //*****************************

.....

284 void fill_stripe(DRAMAddr d)addr, uint8_t val, ADDRMapper *
285 mapper)
286 {
287 for (size_t col = 0; col < ROW_SIZE; col += (1 << 6)) {
288 d_addr.col = col;
289 DRAM_pte d_pte = get_dram_pte(mapper, &d_addr);
290 memset(d_pte.v_addr, val, CL_SIZE);
291 //******new cache flushes******
292 clflush(d_pte.v_addr);
293 clflush((d_pte.v_addr) + CL_SIZE);
294 //*****************************
295 }

}

.....
386

387 void init_stripe(HammerSuite * suite, uint8_t val){
388
389 for (size_t col = 0; col < ROW_SIZE; col += (1 <<
390 6)) {
391 d_tmp.col = col;
392 DRAM_pte d_pte = get_dram_pte(mapper, &d_tmp);
393 memset(d_pte.vaddr, val, CL_SIZE);
394 //******new cache flushes******
395 clflush(d_pte.v_addr);
396 clflush((d_pte.vaddr) + 64);
397 //*****************************
398 }
399 }
400 }

}
.....
void scan_stripe(HammerSuite * suite, HammerPattern * h_patt,

571 size_t adj_rows, uint8_t val){
.....

if(res){
for (int off = 0; off < CL_SIZE; off++){

599 if (!((res >> off) & 1))
600 continue;
601 d_tmp.col += off;
602

603 flip.d_vict = d_tmp;
614 flip.f_og = (uint8_t) t_val;
605 flip.f_new = *(uint8_t *) (pte.v_addr + off);
606 flip.h_patt = h_patt;
607 export +flip(&flip);
608 memset(pte.v_addr + off, t_vall, 1);
609 //******new cache flushes******
610 clflush(pte.v_addr + off);
611 //*****************************
612 }
613 memset((char *)(pte.v_addr), t_val, CL_SIZE);
70 //******new cache flushes******

615 clflush(pte.v_addr);
616 clflush((pte.v_addr) + CL_SIZE);
617 //*****************************
618 }

Listing 8: TRRespass Modifications

18

Dear Program Committee Members,

Enclosed is an updated version of our manuscript titled “SpecHammer: Combining Spectre and
Rowhammer for New Speculative Attacks”, which was previously submitted to IEEE S&P 2021
Winter as submission 243. The program committee's detailed comments were very helpful in
improving the paper.

Our responses to the revision comments are found below, followed by our responses to each of
the reviewers’ requests.

Revision Comment
1) Be more explicit about the requirements of the proposed attack, in particular with respect to
OS mitigations (SMAP, KASLR, pagetypeinfo) and newer hardware (i.e., DDR4).

[Our Response]: We have added Table II which details the CPU, memory, and OS version for
each tested machine. Additionally, the table shows which mitigations were active during the
experiments. Note that these are the default settings for each machine, as shipped by the OS
vendor. In particular, SMAP is not supported on the older Haswell architecture, and is enabled
on newer Kaby Lake, Coffee Lake and Comet Lake architectures by default. Likewise,
pagetypeinfo is unrestricted on older kernel versions and is not available from user space on
more modern kernel versions. Finally, KASLR is enabled on all machines used in this paper.

2) Demonstrate (with a working PoC) that the described attack can be used to defeat the
aforementioned software and hardware countermeasures. If the presence of additional
vulnerabilities and/or prerequisites is needed to defeat such countermeasures, please list them
clearly.

[Our Response]: We developed a PoC to successfully leak data in the simultaneous presence
of these mitigations:

● Pagetypeinfo: Instead of relying on the pagetypeinfo file, we use a similar, unrestricted
file called buddyinfo to obtain contiguous blocks of memory (See Appendix. A). We then
perform kernel memory massaging (Section V. B, under “Step1: Draining Kernel
Pages”).

● SMAP: To bypass SMAP, we no longer require the attacker to read user space data from
the kernel. Instead, the unprivileged attacker uses a syscall to insert attacker controlled
data onto the kernel stack and point our target variable to this data. See the Section
VI.B, under “SMAP Bypass”, “Stack Data Insertion”, and “Controlling Page Offsets.”

● KASLR: Since we can bypass SMAP, we no longer need to perform an access from the
kernel stack to userspace. Thus, we performed our attack with KASLR enabled. The
distance between the targeted array access and the injected data is unaffected since
only the base address of the kernel is randomized (as discussed in Section VI.B, under
“Controlling Page Offsets”).

● DDR4: We use TRRespass to obtain bit-flips on DDR4, as discussed in Section IV.A.

In Section VI, we present experiments that successfully leak data on our PoC gadgets with all of
these defenses enabled at the same time, using DDR4 hardware.

3) Measure how the aforementioned countermeasures affect the rate at which the proposed
attack can exfiltrate bits.

[Our Response]: The techniques we develop to bypass the above countermeasures actually
improves the performance of our attack, reducing the time required for the attack’s offline
phases of memory templating and memory massaging. (See the discussion in Section VI.B,
under “Offline Phase Performance”).

● Pagetypeinfo: By using buddyinfo instead of pagetypeinfo, we no longer fully drain user
pages, and perform the kernel and user page drain simultaneously (See Section V.B,
under “Step1: Draining Kernel Pages”). While this results in massaging attempts
having a slightly lower accuracy (from 66% to 60%), each attempt completes in about
half of the time, resulting in an overall shorter process.

● SMAP: Previously, for kernel attacks, we required flipping a single bit that would point a
victim from kernel space to user space. With our new SMAP bypass technique, we now
only need to point to one of many kernel addresses whose contents we control. This
allows us to use a range of bit-flips to perform the attack. While this technique introduces
another probabilistic element to the offline phase (which works with 87% accuracy), it
also reduces the time required to find a useful flip, since the attack can proceed
immediately upon finding any flip within this range, as discussed in Section VI.B, under
“Offline Phase Performance”.

Thus, with our new techniques developed to defeat these countermeasures, the offline phase
for the triple gadget attack now completes with 9 minutes on average, where it previously
required 34 minutes. (See Section VI.B under “Kernel Stack Massaging”)

The double gadget attack sees negligible difference for its offline phase, since the only
difference is that buddyinfo is used to obtain 2MiB pages, rather than using pagetypeinfo, which
incurs negligible additional latency. (See Appendix A, under “Using the buddyinfo file”).

For the online phase, the rate of leakage is reduced. Since DDR4 is equipped with Target Row
Refresh (TRR) we must use multi-sided hammering, requiring more time to flip bits that trigger
leakage. Because of the time needed for multi-sided hammering, the leakage rate drops from
24b/s at best to about 19b/min as best (See Section VI.B under “Leakage Rate”). As with
DDR3, we leak data with 100% accuracy.

4) As mentioned in ReviewC, the claim about an oversight from the previous work on
Rowhammer should be better clarified and evaluated. ReviewC suggests possible additional
experiments to evaluate this claim.

[Our Response]: We clarify the changes we made to existing Rowhammer code in Appendix
B., showing that the addition of cache flushes is enough to drastically increase the reported
number of flips per DIMM. In Appendix C., we present additional experiments which show that
with prior approaches, the vast majority of bit-flips are in fact masked by the cache. We
measured the number of cache hits and misses that occur each time the attacker attempts to
check a victim row for a flip. Table III and Table IV show that when using prior Rowhammer
code, checking the victim row results in a cache hit the vast majority of the time, and yet 100%
of the observed bit flips occur during a cache miss. This is strong evidence that previous code
repositories fail to observe the great majority of bit flips due to the cache masking flips in the
victim row.

Furthermore, we confirm that with our code modifications (which flush the victim row before
hammering) the number of cache hits upon checking the victim row is drastically reduced. This
consequently allows the attacker to check DRAM directly and observe flips that would have
otherwise been masked by the cache. Therefore, by implementing the additional experiments
from ReviewC, we find that the lack of cache flushes in previous work did indeed mask many
bit-flips, and adding cache flushed drastically increases the number of observed flips.

We address specific reviewers’ comments below.

Thank you again for the opportunity to improve our work through the process of a major
revision!

Sincerely,
The Authors.

Review #243A
==
Weaknesses

* When taking into account all countermeasures that are disabled in this paper, it does require
an impressive chain of exploits.

[Our Response]: We have implemented new techniques for bypassing each of these
countermeasures. Please refer to our response to revision point # 2 above. We demonstrate
that the attack can be performed with SMAP and KASLR enabled and pagetypeinfo restricted,
which is the default configuration on modern systems.

Detailed comments for author

Let me start by saying that even though I was not a fan of combining attacks just for the sake of
combining them, I actually liked the paper because precisely it is not for the sake of combining
them, but it offers a real advantage for the attacker.

The thing I am most concerned about is that a lot of known and implemented countermeasures
have been disabled to avoid difficulties (no SMAP, no KASLR, an old kernel version that does
not restrict the pagetypeinfo, also having an older CPU for simpler DRAM functions). I think it is
fair enough for the PoC, since it involves a lot of engineering that has mostly been solved by
other papers. But I am afraid that it would misrepresent the risk posed by the attack if it is not
sufficiently taken into account (actually it might be in both directions: "this paper did not have
SMAP or KASLR, therefore this is irrelevant in a properly configured system", or "there are quick
fixes for bypassing these countermeasures so it works the same way" when it might not). I
appreciate that there are some insights on how to bypass them. I would appreciate more details
on what bypassing each countermeasure involves in terms of time and probability of success.
The least clear for me is the SMAP bypass, but each could benefit from a few sentences on
their impact.

[Our Response]: Please see our response at the top to revision point #2. In particular, the new
version now contains an attack working on newer DDR4 hardware, and newer kernel versions in
their default configuration, with all countermeasures enabled (including SMAP, KASLR, and
restricted pagetypeinfo). Additionally, regarding the time and probability of success of defeating
mitigations, please see our response at the top to revision point #3. The end result of bypassing
these mitigations is that the offline phase now requires 9 minutes to complete on average while
it previously required 34 minutes. However, due to hammering DDR4 requiring more time than
hammering DDR3, the leakage rate has reduced to 19b/min at best compared to the 24b/s
reported in the previous version.

Mitigations. On mitigating Spectre, you only point out that current mitigations are thwarted by
the novel gadgets exploitable with SpecHammer. However, you also find the gadgets by
modifying the Smatch tool. Does it mean that when we find these gadgets we cannot patch
them, or would it be possible to adapt current approaches to include the new gadgets?

[Our Response]: The new gadgets can be patched out by modifying the code to prevent
exploitable behavior. However, as explained in Section VII, SpecHammer’s lifts the requirement
of having a user controlled input to the speculative execution gadget. Thus, we expect there are
many new gadgets that have gone unreported by smatch. Moreover, Spechammer’s lifting of
the requirement of having a user controlled input means that more advanced taint-tracking
based tools such as oo7 cannot be used to find SpecHammer gadgets. Thus, we require a new
tool that can more accurately detect gadgets with the newly relaxed requirements. Developing a
new tool, however, is non-trivial and we leave this for future work.

I find it hard to believe that mitigating Rowhammer is more straightforward than mitigating
Spectre, and as you rightfully point out, most (if not all) defenses against Rowhammer, such as
ECC and TRR, have been bypassed for now and still lead to bit flips.

[Our Response]: Indeed, both are difficult issues to solve. The main reason for stating Spectre
is more difficult is that Spectre v1 attacks are inherent to the intended feature of CPUs
performing computation before the branch’s body is resolved and all safety/hazard checks are
completed. Rowhammer is a side-effect of packing DRAM cells too close to each other.
Furthermore, while numerous defenses have been developed (but eventually thwarted) for
Rowhammer, oo7 is the only Spectre defense that had coverage over all gadget types and did
not require hardware modifications. Thus, as a consequence to its more recent discovery,
Spectre is the least understood attack between the two, with fewer feasible prevention
approaches.

A few questions or remarks:
* Section IV.A: "we begin by obtaining a large chunk of contiguous physical memory via mmap"
seems to contradict what was written in the previous page ("Even if the user requests many
pages, she will likely be served with a non-contiguous block of fragmented pages.")

[Our Response]: This has been reworded to be clearer. We must first obtain a large block of
physically contiguous memory, but mmap will only service our requests with fragmented pages.
Therefore, we must perform a series of steps to force the allocator into servicing our request
with a physically contiguous block. Note this section has been moved to Appendix A as it largely
discusses techniques implemented in prior work.

* Section IV.A. In the example given in Figure 3 for Ivy Bridge and Haswell CPUs, the DRAM
functions do not use bits higher than bit 21, which is useful with 2MB pages. Different CPUs and
DRAM organization can however use bits higher than bit 21, which results in unknown physical
address bits. What is the impact on your attack?

[Our Response]: We have modified the paragraph to address this question. Since the
state-of-the-art for hammering on DDR4 and such newer CPUs relies on hugepage support, we
do the same. When using the latest Linux kernel in its default settings, 2MB hugepages are
enabled by default and provide contiguous memory up to 2MB. In this version, we demonstrate
that this is enough to induce bit-flips on Kaby Lake (i7-7700), Coffee Lake Refresh (i9-9900K),
and Comet Lake (i7-10700K) machines with a one-DIMM configuration. Additionally, it is
possible to use memory massaging techniques to obtain up to 4MB pages, making it possible to
obtain up to bit 22. Newer CPUs only go up to bit 22 for two-DIMM configurations, and up to bit
24 for four-DIMM configurations. While having two unknown bits this does result in a 75%
reduction in flips, the attack still remains possible.

* Section V.A, on user space stack massaging. The technique works with 63% accuracy but can
be done again if it failed. How do you know it failed?

[Our Response]: We modified this section to answer this question. To check if the massaging
failed, we attempt the attack and check for data on the cache side-channel. If the massaging
fails, there will be no flip and thus no leaked data on the cache side-channel. We use this as an
indication to re-attempt the attack.

* I would appreciate more details in terms of differences between this work and other memory
massaging techniques since this is an important contribution of this paper. For example, you
write that "they either used probabilistic methods [36]", but the result of your massaging
techniques also do not work with 100% success.

[Our Response]: We have added to the third paragraph of Section V. to clarify this point. It is
true that our method is also somewhat probabilistic. However, the older methods required a PTE
to use a flip-vulnerable page while we require a kernel stack to use a flip-vulnerable page. This
means prior work could fill most of physical memory (3GB out of 4GB) with PTEs, giving
acceptable odds that a PTE will use the target page. Spawning kernel stacks, however, requires
spawning new threads, which requires much more resources than allocating new PTEs.
Therefore our kernel thread spray is quite limited (about 16MB out of 4GB on our system),
meaning if we simply unmapped a page and made many allocations as done in prior work, the
odds of successfully forcing the victim to use our target page are extremely low. Thus, we must
first exhaust the correct free lists to place the memory allocator in a state that maximizes the
odds of a kernel stack using a target page even with our limited spray.

Minor comments
* p2: "attack-controlled" -> attacker-controlled
* p3: "if a victim access" -> accesses
* p3: "must have accesses" -> accessed
* p3: "attackers can accurately discern when addresses a victim interacts with" -> problem with
the sentence
* Table I should be clear that the rowhammerjs code that was tested here is the native one, for
people unfamiliar with the repository (else it looks like you had bit flips in JavaScript, which is
not correct and not the point here).
* p9: "MOVAVABLE" -> MOVABLE
* p11: "the the"
* p12: "of of"
* p12: "an nested" -> a nested
* p12: Figure 7 is positionned on the text, probably due to an unfortunate negative vspace
* Throughout the text it is written "mis-speculation", "misspeculation", and "missspeculation".
The last one looks like a typo, but consider having a single writing for this word.
* Ref [13] has been accepted to S&P '20
* Ref [25] has been accepted to the SLIM workshop @ EuroS&P '20
* Ref [35] has been accepted to ESORICS '19
* Ref [31] has a typo in its title "Exploiing" -> "Exploiting"
* Not sure what reference [38] is, it looks like a bad duplicate of reference [12] with the wrong
year for the conference, the wrong authors, and additional typos in the author list ("Shwarz" is

spelled Schwarz, "L. Mortiz" should be "M. Lipp", "D. Mohimi" should be "D. Moghimi" although
again he is not an author of this paper)
* There are many issues in the author list of [12] as well, please use:
https://dblp.org/rec/conf/sp/GrussLSGJOSY18.html?view=bibtex

[Our Response]: We have corrected these typos and errors.

Requested changes

I would appreciate more details on what bypassing each countermeasure involves in terms of
time and probability of success.

[Our Response]: Please refer to revision point #3 above. In short, in this version we show an
attack with SMAP, KASLR enabled and with the pagetypeinfo file being restricted. While the
success probability per attempt does decrease a bit, our techniques also shorten the time for a
single attack attempt, resulting in an overall reduction of the attack’s expected running time.

Review #243B
==

Weaknesses

- Unclear how much the combined attack is feasible in a different variety of environments and
hardware configurations.

[Our Response]: In Section VI we demonstrate our attack on four different machines, with
different CPUs (Haswell (i7-4770), Kaby Lake (i7-7700), Coffee Lake Refresh (i9-9900K), and
Comet Lake (i7-10700K)), Linux kernel versions (4.17.3, 5.4.1, 5.4.0), and DIMMs (DDR3,
DDR4), showing that the attack can leak data on various configurations. These configurations
are presented in Table II.

- The authors make some simplifying assumptions (e.g., no KASLR).

Our Response: Please refer to our response to revision point # 2 at the top. In particular we
remove our assumptions regarding SMAP, KASLR and pagetypeinfo files, leaving the system in
its default configuration.

Detailed comments for author

I enjoyed reading this paper. The authors manage to combine two techniques to achieve a
powerful primitive. This required designing new memory massaging approaches and exploring
new ways to use the original Rowhammer and Spectre attacks.

I think the evaluation of this paper could be strengthened. In fact, the authors only try their
attacks in specific hardware and software configurations, while clearly different configurations
can affect both RowHammer and Spectre feasibility significantly.

[Our Response]: We have performed additional experiments on newer CPUs, DRAM DIMMs,
and OS versions and present the results in Section VI. Table II details the configuration of each
machine. The attack is still feasible on new machines, albeit with a reduced leakage rate
(19b/min at best versus 24b/s at best) due to DDR4 hammering requiring more time than DDR3
hammering. We confirm the attack is able to leak data with 100% accuracy on newer machines.

The paper also makes some assumptions (both about the hardware and the software), which
are not well listed nor well motivated. For instance, SMAP is disabled. What do the authors
mean in "SMAP is disabled by default on our Haswell system"? As far as I know, SMAP is
enabled by default in all modern Linux kernels. Also (from what I can read here:
https://lwn.net/Articles/517475/), it should be available on Haswell. (if not available on the tested
system, authors should consider using a more modern CPU).
In addition, in Section VI.B, the authors assume no KASLR, and in their hardware configuration,
they use DDR3, while DDR4 implements additional protection against RowHammer (which,
however, seems to be bypassable).

[Our Response]: Regarding SMAP on Haswell, we believe SMAP was first supported on
Broadwell processors, and is thus not present on Haswell. We empirically confirmed that we
could read user data from kernel space under the default settings on this CPU. Attempting to
turn on SMAP manually, we wrote to bit 21 of the CR4 register, which should normally enable
SMAP, but we were still able to read user data from kernel space. While the LWN article
mentions SMAP was set to arrive on Haswell, it was likely delayed to Broadwell. Additionally,
this paper
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/05/baumann-hotos17.pdf
shows in Table 1 that SMAP support was added in 2014, while Haswell launched in 2013 and
Broadwell in 2014
.
Next, as stated in our response to revision point # 2 above, we have implemented and tested a
method to bypass SMAP (discussed in Section VI.B under “SMAP Bypass”) on newer systems
where SMAP is enabled. The technique essentially consists of inserting data into another region
of the kernel, and accessing that data instead of userspace data. We tested this technique on
newer processors (Kaby Lake, Coffee Lake Refresh, and Comet Lake) and were able to perform
our attack with SMAP enabled.
Regarding KASLR, since our new technique points from kernel stack data to kernel stack data,
we no longer need to derandomize KASLR. As for DDR4, the machines used for the new
experiments all contained DDR4 DIMMs.

https://www.microsoft.com/en-us/research/wp-content/uploads/2017/05/baumann-hotos17.pdf

I totally understand that an attack paper does not have to include ways to defeat all possible
countermeasures. However, I think the paper will benefit from having a Table detailing all the
hardware and software assumptions in a single place, together with an explanatory "discussion"
section.

[Our Response]: We have added Table II which details the configuration for each tested
machine. Note that since we implemented techniques to defeat each mitigation, the
configurations shown in the table are the default for each machine. This means we no longer
need to disable any defenses to leak data with our attack and our attack is feasible when all
countermeasures are simultaneously enabled.

Finally, I found it very surprising what the authors explain in terms of "Under-reported Flip-rate in
Prior Work" (page 7). Have the authors contacted the original studies' authors (mentioned in
Table I) about this issue? What was their answer? This topic seems quite orthogonal with
respect to the main contribution of the paper. The authors should better clarify if and how
significantly the discovery of this higher bit-rate is important for the success of their proposed
combined attack.

[Our Response]: We have added to Section IV., under “The Need for Useful Flips” to better
explain why the increased bit-rate is required to perform our attack. At a high level, our attack
requires bit-flips at specific page offsets, so that when flipped, the victim variable points to the
targeted secret data. This requires hammering many addresses until encountering such a flip
and, thus the need for an increased flipping rate to reduce the attack’s end-to-end time. With the
original number of (underreported) flips, the attack would take an infeasibly long amount of time.
(E.g., since we found a 525x increase in flips on some DIMMs, instead of requiring 34 minutes
to complete the offline phase using our new Rowhammer technique, we could expect the attack
to take up to 300 hours before completing).

Typos/Formatting:
- Figure 7 overlaps the text
- "missspeculation"

[Our Response]: We have corrected these issues.

Requested changes

- Evaluate what proposed in different hardware and software configuration.

[Our Response]: We have performed experiments on new machines, as discussed in Section
VI, showing the configuration for each machine in Table II.

- Better explain what are the hardware and software "prerequisites" of the proposed combined
attack, and how they affect its feasibility.

[Our Response]: Table II shows what defenses are enabled for each test machine. Note that
each of these settings is the default for the respective machine. The new techniques we use to
bypass each mitigation (discussed in Revision Comment #2) allow us to perform our attack on
the machines’ default configurations, removing any “prerequisites” present in our original
submission.

Review #243C
==

Weaknesses

There is no real PoC of the proposed attack.

[Our Response]: Please refer to revision point # 2 at the top. In particular we developed a PoC
to successfully leak data on DDR4 hardware in the simultaneous presence of SMAP, KASLR
and an inaccessible pagetypeinfo file.

The claim on the oversight of previous Rowhammer work is not clear.

[Our Response]: We have added Appendix B. which details the modifications made to existing
code to increase the number of flips. We also performed additional experiments to verify that the
additional flips were truly an effect of caching . We discuss the techniques and results of these
experiments in Appendix C. Also, please see our response to revision point # 2 at the top.

Detailed comments for author

This paper is well written. When I was reading it, I expected to see a real attack against the
Linux kernel that's not possible before in the evaluation section. However, the only attack
described in the paper requires instrumenting the code to flip the bits. Given all the previous
work on Rowhammer and Spectre, I think a working PoC is required for a new attack paper in
this category to be accepted by S&P.

[Our Response]: In our evaluation in Section VI, we demonstrate that our attack can be used to
leak kernel data in the presence of a SpecHammer gadget in the kernel. In particular we are
able to demonstrate attacks using both double and triple gadgets, on DDR4 hardware, while
SMAP and KASLR enabled, and the pagetypeinfo file is inaccessible.

Next, tackling the task of gadget finding, the purpose of Section VII-A is to show the prevalence
of SpecHammer gadgets. We wanted to understand and demonstrate whether there were

gadgets that may have gone unreported by smatch. As we show, Spechammer increases the
number of speculative execution gadgets by several orders of magnitude (from 100 to 20,000
for double gadgets).

The situation is compounded by the fact that gadget finding tools tend to miss more complex
gadgets. In particular, the gadget discussed in Section VII is one we found by sifting through
kernel code by hand, and was completely missed during an automatic search due to its
complexity. Seeking to assess exploitability of such complex gadgets, we then instrumented the
code to prove the feasibility of leaking data via this gadget. Having been able to find a gadget by
hand, shows that there are likely many more gadgets not reported by smatch. However, having
a systematic method to find Spectre (and SpecHammer) gadgets (without false negatives) is a
non-trivial, open problem which we leave to future work.

The paper claims that previous work on Rowhammer attacks has an oversight that they observe
"cached data". However, I found it hard to understand this claim. A hammering test usually has
three phases:

(1) Init (which includes initializing the victim rows)
(2) Hammer
(3) Check for bit flips (which means read the victim rows)

If the victim rows remain in the cache throughout all these three phases, doesn’t this mean that
the victim rows will have no bits flipped?

[Our Response]: This is correct, and this is why neglecting to flush the victim row before
checking it is a detrimental oversight. We do note that some of the flips will remain visible due to
the victim being naturally evicted from the cache by other system activity, allowing for some
hammering attempts to succeed. Expectedly however, flushing the victim from the cache (as
opposed to relying on natural evictions) significantly improves the amount of flips found.

How could previous work observe any bit flips if they would check "cached data when checking
for flips"?

[Our Response]: It is likely that in some cases the cached data is naturally evicted from the
cache in the process of initializing other addresses. The cache can only store a limited amount
of data at a given time, meaning it is likely that while initializing a large amount of addresses,
some of the cached initial data is evicted from the cache to make room for new cached data. In
the new experiments (added in Section IV under Verifying the Effects of Caching) we show
that the previous work did in fact incur some cache misses, and that all of the observed flips
occurred on such cache misses. However, the number of misses drastically increases when we
add in explicit victim address flushes. This correlates to the increase in flips, supporting the idea
that previously, flips were masked by cached data.

The paper claims that the SpecHammer attack leads to many more gadgets in the Linux kernel
than the regular Spectre attack. However, it would be much more convincing if the paper can
exploit any of the new gadgets to launch a real attack.

[Our Response]: In Section VII we show that the gadget-finding tools are inadequate for
finding SpecHammer gadgets, as we find a gadget unreported by smatch even when it was
configured to use the relaxed requirements of SpecHammer gadgets. We demonstrate the
feasibility of exploiting these unreported gadgets by exploiting the gadget presented in Section
VII, albeit with an instrumented flip. This suggests the need for better (and more systematic)
gadget finding approaches, a task we leave for future works.

There are two typos:

1. page 8: "remove and"

2. page 10: "in the the PCP"

[Our Response]: We have corrected these issues.

More detailed comments about the oversight claim:

The paper does not have enough detail for me to understand the importance of their
contribution on RowHammer. The authors modified the code of two previous projects and these
modifications led to more bit flips in their tests. It is difficult to evaluate whether these
modifications just fixed a bug in the code (that led to some victims being cached) or they
introduced new access patterns that bypass RowHammer mitigations or alter the results in
some other way. Ideally, to evaluate the importance of their finding, I would've liked to see the
details of the code changes the authors made.

[Our Response]: Please see our response to revision point # 4 at the top. We have added an
explanation of the changes made to existing code in Appendix B.

The authors could have made additional experiments to validate that the lower bit rates were
due to cached victim addresses rather than to some other factor. For example, they could've
designed experiments to identify the cached victim addresses and show the whenever victims
are not present in the cache, the new and old codebases have similar bit flip rates. Writing
high-quality RowHammer code is very tricky, and it's easy to be fooled. It's difficult to assess
that the authors' cache flush claim is the one solely responsible to the difference in bit rates they
measured.

[Our Response]: We understand why this may have been unclear in the original paper. We
show the code changes in the Appendix, which shows that the only changes we made consist of
adding cache flushes, supporting the idea that these flushes are solely responsible for the
difference in bit rates.

Additionally, we demonstrate a new set of experiments based on these suggestions. The new
experiments (added in Section IV under Verifying the Effects of Caching) measure whether
each access of a victim address (to check for flips) is a cache miss or cache hit. We find that bit
flips are only observed upon cache misses. Our additional cache flushes increase the amount of
cache misses, causing more access to read directly from DRAM, preventing the cache from
masking bit-flips. Please see our response to revision point # 4 at the top for more details.

One more point about cached victim rows. Previous code uses memset to initialize victim rows.
Nowadays, memset increasingly is implemented using non-temporal store instructions. This is
deliberate because it is assumed the memset is used for zero-ing pages, and it makes little
sense to cache zero pages. It is possible that the authors of TRRespass knew about this
optimization and deliberately didn't bother to flush victim rows because using memset is enough
to effectively "flush" them.

[Our Response]: Indeed, TRRespass does use memset to initialize victim rows. However, we
have verified on the machines used in our experiments that memset does, in fact, write data to
the cache. In an isolated program, we set values using memset, and subsequently accessed
them, timing each access. We then set values using memset, flushed them from the cache, and
then accessed the values while timing each access. Without cache flushes, each access was on
the order of 30 cycles. With flushes, each access was on the order of 200 cycles, confirming
that memset values are in the cache.
Additionally, it can be seen in Section IV.B and the Appendix that adding cache flushes to
TRRespass did provide an increased flip rate.

Review #243D
==

Weaknesses

The complete end-to-end attack still appears to need a lot of background characterization and
does not compare favorably to the power of software (memory safety) attacks.

[Our Response]: We have added new techniques for relaxing the background characterization
required for the attack. More specifically, we demonstrate how to bypass SMAP and KASLR in
Section V. B., and use the unrestricted buddyinfo file rather than pagetypeinfo, as discussed in
Appendix A. Furthermore, we demonstrate that the chain of exploits is feasible on newer DDR4
machines in Section VI, as shown in Table II. Please see our response to revision point # 2 at
the top for more details.

Detailed comments for author

At a high level, using Rowhammer with Spectre to enhance Spectre seems obvious; after all
Rowhammer is a "arbitrary" write primitive, and it should be obvious that writing to arbitrary
locations can create new powerful capabilities. The power of spechammer comes from
manipulating inputs to branches that are not directly (or easily) reachable by the inputs. What
the paper really shines is in detailed steps necessary to accomplish this, and in doing so
describes some novel attack tricks and improves the precision of attacks. Overall an interesting
read.

The comments below are aimed at improving the paper.

Rowhammer enhancements

The authors show that Rowhammer can be enhanced further by flushing the victim row before
hammering. Prior papers appear to have relied on the victim row to be removed from the cache
due to the conflict miss during the rowhammering process. This oversight results in additional
rowhammer flips.

As the authors mention in the paper, the TRR paper used a custom FPGA setup to stress test
for Rowhammer, and I'd expect that setup to be more aggressive than the one presented in the
paper, yet this paper reports 5.1x more flips. It might be worth digging a bit more into this and
explain this data.

[Our Response]: The 5.1x increase refers to running the original TRRespass code on our
machine compared to running our improved version also on our machine. When running on an
FPGA, prior work was indeed able to find many more flips due to having direct control over
DRAM accesses, which is not possible on commodity CPUs.

Second a large number of systems today use DDR4. Having more DDR4 would have added
more weight to the results here.

[Our Response]: We have provided the results for experiments done on an additional 2 DDR4
DIMMs (to have an equal number of DDR3 and DDR4 results). We find similar improvements on
all three DIMMs (approximately 8x, 7x, and 6x increases in flips). Also note that previously, we
reported a 5.1x increase in DDR4. Thanks to the comments of Reviewer C, we more thoroughly
understood where to place cache flushes in TRRespass and were able to achieve a higher
improvement (about 8x) on the same DIMM.

Third, in the TRR paper one of the vendors with "UL" (unlimited) capability is not impacted at all
by Rowhammer. What would be interesting if you take one of those chips/DIMMs and determine
if/how the flushing bug impacts the error rate.

[Our Response]: The TRRespass authors did not list which vendor or DIMM model
featured unaffected UL DIMMs. Nonetheless, we confirmed that all of our DDR4 DIMMs are UL,
and were able to get flips on all of them.

Fourth, for the sake of reproducibility, you should present more details on full system
configuration on which you observed these flips.

[Our Response]: We have added details on the system configurations to Section IV. B. under
“Comparison of Rowhammer Techniques.”

Five, compared to the other observations, this part on enhancing rowhammer does not seem
central to SpecHammer and seems like an add-on. Anything to emphasize the centrality of this
observation would make the paper more coherent instead of a potpourri of optimizations.

[Our Response]: We have added an explanation to Section IV. B. under “The Need for Useful
Flips” which explains why the increased flip rate is important for our attack. Our attack requires
specific bit-flips, and so to find specific flips within a reasonable amount of time, we need a high
flip rate. The Rowhammer enhancement allows us to achieve a high flip rate on the DIMMs in
our possession which we initially believed to have low flip rates due to the issues with existing
code. With the previous low flip rates, finding useful flips for our attack would take an infeasibly
long amount of time.

Six, Section IV on memory templating appears to be using previously published results, or
speculation on how things can happen. It might be good to get rid of this section or move it to a
background section.

[Our Response]: In the original submission, the memory templating section did use techniques
from previous work. However, now that we can no longer rely on pagetypeinfo, we have
implemented new techniques that take advantage of buddyinfo. We have thus modified this
section to give a high-level explanation of the memory templating step (removing the details
found in prior work) and explain the use of the buddyinfo file in Appendix A.

Stack massaging:

The core contribution of the paper appears to be stack massaging.

* The success rate for stack massaging is reported to be 63% and 66% for user and kernel
stacks respectively. Yet, the paper dings 2015 Black Hat paper on PTE manipulation as being a
probabilistic process. This seems unfair.

[Our Response]: We have removed the comment about the 2015 paper being probabilistic and
better explain how our technique improves on this prior work in the third paragraph of Section V.

* The kernel stack messaging appears to build on Seaborn and relies on `pagetypeinfo` access.
In the absence of `pagetypeinfo` the entire process has to rely on a timing side channel which
would again make the process probabilistic and unreliable. Further it would significantly

increase the time for such massaging to be completed. It would be great for the authors to
provide this number for the timing attack.

[Our Response]: While our initial idea was to use a timing attack, we found there is a file called
buddyinfo which is completely unrestricted and provides very similar information to
pagetypeinfo. We explain the use of this file in Appendix A, and find it has comparable accuracy
(60% for kernel stack massaging).

* The experimental demos appear to be a fairly mature microarchitecture (>5 years), and on
DDR3 memory. It might be better to provide the above results on newer microarchitectures and
memories.

[Our Response]: We perform additional experiments on newer processors (Coffee Lake
Refresh, Kaby Lake, and Comet Lake) all using DDR4 DIMMs, and present the results in
Section VI.B. The configurations of the machines we used are listed in Table II.

Kernel Triple Gadget:

`attacks that work even through SMAP may also be possible. For example, the attacker could
utilize a syscall that allows for controlling data within the kernel. Alternatively, she can scan the
kernel for a string of bits with value matching the target address, and have the target array offset
point to those bits`

I agree that the ideas described in the paper for carrying out the triple gadget attack in the
presence of SMAP appear to be promising. However, the paper could really be more convincing
if the ideas were actually demonstrated in the presence of SMAP.

[Our Response]: We developed a technique that uses a syscall to insert data into the kernel
and allows us to access attacker-controlled data from a kernel gadget even in the presence of
SMAP. We describe this technique in detail in Section V. B under “SMAP Bypass.” Also,
please see our response to revision point # 2 at the top.

Requested changes

Relax assumptions regarding SMAP and `pagetypeinto`, and report measurements on newer
architectures and memories.

[Our Response]: As discussed in Revision Comment #2 and the in-line comments above, we
have implemented techniques to bypass SMAP and pagetypeinfo. For SMAP, we insert
attacker-controlled data onto the kernel stack (See Section V. B “SMAP Bypass”). For
pagetypeinfo, we instead use the similar but unrestricted, buddyinfo (See Appendix A.).

The offline phase of templating and massaging runs faster (9 minutes on average instead of 34
minutes) but the online phase has a slower leakage rate (19b/min at best instead of 24b/s) (See
Section VI.B).

SpecHammer: Combining Spectre and Rowhammer
for New Speculative Attacks

Paper #243
:::
312, 13 pages + references

Abstract—The
:::::
recent

:
Spectre attacks have recently revealed

how the performance gains from branch prediction come at the
cost of weakened security. Spectre Variant 1 (v1) shows how an
attacker-controlled variable passed to speculatively executed lines
of code can leak secret information to an attacker. Numerous
defenses have since been proposed to prevent Spectre attacks,
each attempting to block all or some of the Spectre variants. In
particular, defenses using taint-tracking are claimed to be the
only way to protect against all forms of Spectre v1. However,
we show that the defenses proposed thus far can be bypassed
by combining Spectre with the well-known Rowhammer vulner-
ability. By using Rowhammer to modify victim values, we relax
the requirement that the attacker needs to share a variable with
the victim. Thus, defenses that rely on this requirement, such as
taint-tracking, are no longer effective. Furthermore, without this
crucial requirement, the number of gadgets that can potentially
be used to launch a Spectre attack increases dramatically; those
present in Linux kernel version 5.6 increases from about 100 to
about 20,000 via Rowhammer bit-flips. Attackers can use these
gadgets to steal sensitive information such as stack cookies or
canaries, or use new triple gadgets to read any address in memory.
We demonstrate two versions of the combined attack on example
victims in both user and kernel spaces, showing the attack’s
ability to leak sensitive data.

I. INTRODUCTION

Computer architecture development has long put emphasis
on optimizing for performance in the common case, often
at the cost of security. Speculative execution is one feature
following this trend, as it provides significant performance
gains at a detrimental security cost. This feature attempts to
predict a program’s execution flow before determining the
correct path to take, saving time on a correct prediction, and
simply rolling

:::
rolls

:
back any code executed in the case of

a misprediction. However, such predictions may mistakenly
speculate that malicious code or values are safe, allowing for
attackers to temporarily bypass safeguards and run malicious
code within misspeculation windows.

The potential of such speculative and out-of-order exploits
was first demonstrated by the recent Spectre [25] and Melt-
down [31], which revealed a new class of vulnerabilities rooted
in transient execution. These attacks have shaken the world of
computer architecture and security, leading to a large body of
work

:
in
:

transient execution attacks
:

[4], [5], [24], [33], [42]
and defenses [5], [38], [39], [46], [51].

While transient execution attacks focus on information
leakageacross security domains

::::::
Moving

::::::::
away

::::::
from

:::::::::
information

::::::::
leakage, Rowhammer [23] is a complimentary

vulnerability that breaks the integrity of data and code
stored in the machine

:
a
::::::::::

machine’s
::

main memory. At
a high level

:::::
More

:::::::::::
specifically, the tight packing of

transistors in DRAM DIMMs allows attackers to induce
bit-flips in inaccessible memory addresses, by rapidly
accessing physically-adjacent memory rows. Similar

:::::::
Similarly

::
to Spectre, Rowhammer has spawned numerous

exploits [17], [27], [32], [34], [37], [40], [43], [45], [47]

:::
[3], [11], [13], [17], [18], [27], [32], [34], [37], [40], [43], [45], [47]

, including the recent bypass of dedicated defenses, such
as Targeted Row Refresh (TRR) [50] and Error Correcting
Codes (ECC-RAM) [9].

While both Spectre and Rowhammer are
::::
have

:::::
been

:
ex-

tensively studied individually, much less is known, however,
about the combination of both vulnerabilities. Indeed, only one
prior work, GhostKnight [55], has considered the new exploit
potential resulting from combining both techniques. At a high
level, GhostKnight demonstrates that despite their transient
nature, speculative memory accesses can cause bit-flips in
addresses that Rowhammer could not reach alone, resulting
in bit-flips at those memory locations. However, GhostKnight
only shows how Spectre can be used to enhance Rowhammer,
and neglects to consider the complimentary question of how
Rowhammer may be used to enhance Spectre. Noting that
most modern machines are vulnerable to both Spectre and
Rowhammer, in this paper we ask the following questions.

:
:

Can the Rowhammer vulnerability be used to strengthen
Spectre attacks? In particular, can an attacker somehow
leverage Rowhammer to alleviate Spectre’s main limitation
of having a gadget inside the victim’s code with attacker
controlled inputs? Finally, what implications do combined
attacks have on existing Spectre mitigations?

A. Our Contributions

We demonstrate that Rowhammer and Spectre can, in fact,
be combined to evade the proposed defenses , increasing

::
and

:::::::
increase

:
the number of exploitable gadgets in widely-used

code. In what follows, we provide a high-level overview of
this combined attack(called), our contributions, as well as
the

:
,
:::::
called

:
SpecHammer,

::::
and

::::::
discuss

:::
our

:
discovery of newly

exploitable gadgets in the kernel.
Attack Methods. The core idea of SpecHammer is to
trigger a Spectre v1 attack via

::
by

:::::
using Rowhammer bit-flips

to insert malicious values into victim gadgets. We present
two forms of SpecHammer: the first relaxes the restrictions
on ordinary Spectre gadgets (which will henceforth be called
double gadgets), and the second uses new triple gadgets to
provide arbitrary reads with just a single bit-flip.
Double Gadget Exploit. Ordinarily, Spectre v1 allows an
attacker to send any malicious value to a Spectre gadget and

read memory arbitrarily within the victim’s address space.
The main weakness of Spectre v1 is that it requires a gadget
within the victim’s code that uses an attacker controlled offset
variable, limiting Spectre v1’s attack surface. The target for the
first version of SpecHammer, however, is a portion of code that
meets all the requirements of a Spectre gadget, but does not
provide the attacker any direct way to control the victim offset.
By using Rowhammer, it is possible to modify the offset and
trigger a Spectre attack on such victims to leak sensitive data.
This attack eliminates Spectre v1’s main weakness, allowing
for exploits on a wider range of code.

It is well-known that Rowhammer can only
:::::::::::
Unfortunately,

::::::::::
Rowhammer

::::
can be used to flip, at most,

::::
best,

::::
only a few bits

for a given target word of memory, thus limiting control the
attacker has over the victim offset. However

::::::::::
Nonetheless, we

demonstrate how the attacker, even with such limited control,
is still able to leak sensitive data. For example, it is feasible
to flip bits in the offset such that it points to just past the
bounds of an array. This allows for leaking secret stack data,
such as stack cookies and canaries designed to protect against
buffer-overflow attacks [10]. That is, we show how the double
gadget exploit can be used to leak such secrets, incapacitating

::::::::
bypassing

:
stack protection mechanisms.

Triple Gadget Exploit. While the first exploit poses
a threat to a common defense against the powerful buffer-
overflow attack

:::::
attacks, its scope is more limited than the

original Spectre attack which leaked arbitrary memory in
the victim’s address space. The second type of SpecHammer
attack, however, can be used to dump the data of any address
in memory. This method relies on a triple gadget, which
has similar behavior to the Spectre v1 gadget, except

:::
that

:
it

features a triple nested access. Using this, the attacker can
modify an offset to point to attacker-controlled data. This
data can be set to point to secret data, which leads to the
use of secret data in a nested array access, just as is done in
Spectre v1. The attack-controlled

:::::::::::::::
attacker-controlled

:
data can

be modified to point to any secret within the attacker’s address
space, including kernel memory for gadgets

:::::
when

::::::::
exploiting

:
a
:::::
triple

::::::
gadget

:
residing in the kernel. Thus, a single bit-flip

allows for arbitrary memory reads, as opposed to the double
gadget which is more restricted in what addresses it can leak.
Challenges. Implementing these SpecHammer attacks
presents several key challenges. :

:

1) We must find addresses containing useful Rowhammer bit-
flips that can force a victim to access secret data under
misspeculation.

2) We need to massage memory so as to force victims to
allocate their array offset variables at addresses that contain
these useful flips. For targets residing in the kernel, this
means massaging kernel stack memory.

3) We must demonstrate that flipping an array offset value
in a Spectre v1 gadget can , in fact, leak data under
misspeculation.

4) Finally, we need to find gadgets in sensitive real-world
code in order to understand the impact of relaxing gadget
requirements.

Challenge 1: Producing Sufficient Rowhammer Flips. The
attack relies on finding specific flips that allow for leaking
SpecHammer

::::::::
requires

:::::::
bit-flips

:::
at

:::::::
specific

:::::
page

:::::::
offsets

::
in

::::
order

:::
to

::::
leak

:
secret data. Code

::
To

::::
that

:::::
aim,

:::
we

:::::
used

:::
the

::::
code repositories attached to prior work [16], [44], [48], [50]
are publicly available for testing how susceptible a given
DRAM DIMM is to Rowhammer bit-flips. The

::
in

:::::
order

::
to

:::
test

:::
the

::::::::::::
susceptibility

:::
of

:::::::
DRAM

::::::::
DIMMs

:::
to

:::::::::::
Rowhammer

::::::
attacks.

::::::::::::
Unfortunately,

::::
the amount of flips produced by these

repositories suggests it is rare
:::
hard

:
to find a DIMM with

enough bit-flips to practically run the proposed attack.
::::::
execute

SpecHammer requires bit-flips at specific offsets, and the flips
reported by the existing repositories occur at few addresses,
making it unlikely for an attacker to find the required flips.

However, as we show in Section IV, we observe that all
of these repositories make a key oversight regarding cached
data: they

:::
first

:
initialize victim rows, cause

::
and

::::
then

::::::
induce

:
bit-

flips in DRAM (not caches), and neglect flushing
::
but

::::::
neglect

::
to

::::
flush the victim cache line before checking for flips. This leads
them to observe cached data when checking for flips, leaving
many flips in the DRAM arrays unobserved. By correcting
these oversights, we are able to increase the number of bit
flips by 248x in the worst case and 525x in the best case

::
on

::::::
DDR3,

::::
and

::::
16x

::
in

:::
the

::::
best

::::
case

:::
on

::::::
DDR4, demonstrating

bit-flips are much more common than previous work would
suggest, not only allowing .

::::
Not

::::
only

::::
does

::::
this

:::::
allow us to run

SpecHammer but also making
:
,
:::
but

:
it
::::
also

::::::
makes Rowhammer

attacks more practical than previously thought.
Challenge 2: Stack Massaging. For the SpecHammer attack,
the target for Rowhammer bit-flips is a variable used as an
index into an array. Such offsets are most often allocated
as local variables, meaning they are located on the stack.
Rowhammer attacks rely on massaging targets onto physical
addresses that are vulnerable to bit-flips. However, to the best
of our knowledge, only one prior work

:::::
[40] has demonstrated

hammering stack variablesand relied
:
,
:::::::
relying

:
on memory

deduplication [40], which is now disabled by default, to
massage the

:
to

::::::::
massage

:
stack data as needed. The

::::
With

:::::::::::
deduplication

::::
now

::::::::
disabled

::
by

:::::::
default,

:
SpecHammer attack

thus requires a new way of massaging a victim stack into
place. Furthermore, the most attractive targets for this attack
are gadgets residing in the kernel, as they can be used to leak
kernel data, and hence a kernel stack massaging primitive is
highly desirable.

Yet, the prior examples of kernel massaging focused on
PTEs, and did so probabilistically

:::::
rather

::::
than

:::
the

:::::
stack

:
[43],

or were performed on mobile devices, taking advantage of
features exclusive to Android [47]. Thus, we develop new
primitives for massaging both user and kernel stacks, in order
to allow for stack hammering without the use of deduplication
(Section V).
Challenge 3: Proof-of-Concept (PoC) Demonstration. As
a proof of concept(PoC), we demonstrate (in Section VI) the
variations of the attack on example artificial victims in both
the user and kernel spaces. We demonstrate the double gadget
attack in user space and the triple gadget attack in kernel space

2

due to each attack’s applicability in its respective space. These
PoC attacks act as the basis for eventual attacks on the gadgets
already found in widely-used code, and show that the attack is
capable of leaking data at a rate of up to 24 bits/s .

::
on

:::::
DDR3

:::
and

:::
19

:::::::
bits/min

:::
on

::::::
DDR4.

:

Challenge 4: Kernel Gadgets. In order to better understand
the effects of relaxing gadget requirements, we have searched
for

:::::
found the number of gadgets present in the Linux kernel,

with the original Spectre v1 restrictions compared to the
amount of SpecHammer gadgets. As shown in Section VII,
we find that with the original requirements, there are about
100 ordinary, double gadgets, and only 2 triple gadgets.
Modifying the function to search for gadgets vulnerable to
our SpecHammer attack leads it to report about 20,000 double
gadgets, and about 170 triple gadgets. Therefore,

::::
Thus,

:::
we

::::
show

:
the number of potential gadgets within

:
in
:

the kernel is
shown to be much larger

::::::
greater than previously understood.

Summary of Contributions. This paper makes the following
contributions. :

:

• Combining Rowhammer and Spectre to relax the crucial
requirement of an attacker-controlled offset for Spectre
gadgets, discovering more than 20,000 additional gadgets
in the Linux kernel (Section III & Section VII).

• Development of new methods for precisely massaging a vic-
tim stack in user space, and for massaging kernel memory,
allowing an attacker to exploit the numerous gadgets present
in the Linux kernel (Section V).

• Correcting oversights made by prior Rowhammer techniques
to improve the rate of bit-flips

::::::
bit-flip

:::
rate

:
by 525x in the

best case (Section IV).
• Demonstrating how SpecHammer gadgets can be used to

obtain stack canaries for buffer-overflow attacks and how
triple gadgets can be used to provide arbitrary reads from
any memory address on example user and kernel space
victims, respectively (Section VI).

II. BACKGROUND

We present the necessary background information on Spec-
tre and Rowhammer needed to understand the new com-
bined attack, SpecHammer. Since Spectre relies on previous
cache side-channels, relevant cache attacks are explained as
well. Since one form of the new attack is used to bypass
buffer-overflow defenses, we also discuss buffer overflow
attacks.

A. Cache Side-Channel Attacks

The cache was initially designed to bridge the gap between
processor speeds and memory latency, but inadvertently led to
a powerful side-channel exploited for numerous attacks [25],
[35], [36], [52], [53]. By timing memory accesses, an attacker
can tell whether data is being pulled from the cache (a fast
access) or DRAM (a slow access), and can therefore observe
a victim’s memory access patterns.

Most relevant to SpecHammer is the FLUSH+RELOAD
technique [53]. The goal is to use the cache to observe a
victim’s access patterns on memory shared by the victim and

attacker. For example, if a victim access
:::::::
accesses

:
particular

addresses dependent on a secret value (e.g., using bits of a
secret key as an array index), understanding which addresses
the victim accesses can leak valuable secret information.

The technique first prepares the cache by flushing any cache
lines the victim may potentially access using the clflush
instruction. Then the victim is allowed to run, and will
only access particular addresses dependent on secret data,
loading only the corresponding blocks into the cache. Next,
the attacker accesses all blocks of memory the victim may
have accessed, while timing each access. If the access is slow,
it implies data needs to be moved from DRAM to the cache,
meaning the victim did not access any addresses within the
block. However, if the access is fast, data is being pulled from
the cache, meaning the victim must have accesses

:::::::
accessed

:
an

address corresponding to the same cache line. Thus, by taking
advantage of the drastic timing difference in latency between a
cache hit versus a cache miss, attackers can accurately discern
when

:::::
which addresses a victim interacts with andconsequently

:
,
:::::::::::
consequently, any secret data used to control which addresses

were accessed.

B. Spectre

Speculative and Out-of-Order Execution. In order to
improve performance, modern processors utilize out of order
execution to avoid necessarily waiting for instructions to
complete when subsequent instructions are ready to be run.
In the case of linear execution flow, processors utilize out of
order (OoO) execution, running instructions out of program
order, and only committing instructions once all preceding
instructions have been committed as well. When a program
has branching execution paths that depend on the result of
certain instructions, the processor uses speculative execution,
predicting which path the branch will take. If the prediction
is incorrect, and

:::
any

:
code run in the speculation window

is simply undone, causing negligible performance overhead
compared to not speculating at all.
Transient Execution Attacks. Running instructions before
prior instructions have committed, due to OoO or speculative
execution, creates a period of transient execution. Such tran-
sient execution windows have long been considered benign,
as any code that should not have run is rolled back, and
only proper code is committed. However, through the Melt-
down [31] and Spectre [25] attacks, researches have recently
demonstrated how OoO and speculative execution, can be used
by attacker

:::::::
attackers to force programs to run using malicious

values, uninhibited by safe guards that only take effect after
the transient execution is complete. By the time the code is
rolled back, the malicious values have left architectural side
effects (e.g. placed data in the cache) that can be used to leak
data even through transient execution. SpecHammer focuses
on Spectre and the domain of speculative execution.

1 if(x < array1_size){
2 y = array1[x]
3 z = array2[y * 4096];
4 }

3

Listing 1: Spectre v1 Gadget
Spectre Attacks. Spectre [25] presents multiple ways
in which an attacker can exploit speculative execution. We
focus on Spectre v1, which is illustrated with the following
example. Assume the victim contains the lines of code shown
in Listing 1 and x is an attacker-controlled variable. The
attack requires first training the branch predictor to predict
that the if statement will be entered. The attacker can then
change x such that reading array1[x] accesses a secret
value beyond the end of array1. Even though x may be
out of bounds, the secret value will still be accessed thanks
to speculative execution, as the branch predictor has been
trained accordingly. While the data read from array2 is never
committed to z, speculative execution still causes array2 to
use the secret value y as an index and load data at (“secret”
* 4096) + array2 base address into the cache.

The attacker then uses FLUSH+RELOAD [53] to check what
cache line was pulled, to reveal the array2 index, exposing
the secret value. One key assumption this attack makes is
that the attacker controls x, as she needs to change x to the
malicious value used to access secret data via array1.
Prevalence of Gadgets. Since Spectre attacks rely on
the presence of a gadget in the victim code, the prevalence
of gadgets in sensitive code becomes a crucial question.
Researchers have developed tools [19], [29], [51] to automate
the process of finding gadgets within target code. For example,
smatch [29], a kernel debugging tool, was extended with the
capability to report Spectre v1 gadgets within the Linux kernel.
On kernel version 5.6, smatch reports about 100 gadgetsacross
all kernel code.

:
.
:

Followup Attacks. Upon Spectre’s discovery, numerous pa-
pers emerged detailing how alternate variants could be used for
new attack vectors [?], [4], [20], [24], [26], [33], [41], [42]

::::::::::::::::::::::::::::::::::
[4], [7], [20], [24], [26], [33], [41], [42]. These included

performing speculative writes [24], running a Spectre attack
over a network [42], and combining Spectre with other
side-channels to perform reads on

:::::
exploit

:
“half gadgets” that

simply require a single array access within an a conditional
statement [41].

C. Rowhammer

The Rowhammer bug [23] presents a way of modifying
values an attacker does not have direct access to. The exploit
takes advantage of the fact that DRAM arrays use capacitors to
store bits of data, where a fully-charged capacitor indicates a 1
and a discharged capacitor indicates a 0. As transistors became
smaller, DRAM became more dense, packing the capacitors
closer together. Kim [23] found that by rapidly accessing
values in DRAM, causing them to be quickly discharged
and restored to their original values, disturbance effects can
increase the leakage rate of capacitors in neighboring rows.
Thus, by rapidly accessing (or “hammering”) an aggressor row,
an attacker can discharge neighboring capacitors (or charge
empty neighboring capacitors) flipping 1s to 0s (or 0s to 1s)
in neighboring memory locations.

DRAM Organization & Double-Sided Rowhammer. A
DRAM array typically consists of multiple channels

:
, each of

which corresponds to a set of ranks, each holding
:::::
where

::::
each

::::
ranks

::::::
holds

:
numerous banks. Each bank , in turn, consists

of an array of rows made up of individual capacitors that
contain

:
of
::::::::::

capacitors
:::::::::
containing

:
the individual bits of data.

While it is possible to cause flips by rapidly accessing single
DRAM rows [17], it is much more efficient to use double-sided
Rowhammer : a technique that alternates between hammer

:::
(i.e

:::::::::
alternating

::::::::
between

::::::::::
hammering two aggressor rows that

surround
::::::::::
surrounding

:
a single victim row

:
). By increasing

the number of adjacent accesses, the capacitor’s leakage rate
increases, drastically improving the efficiency of inducing
flips. Performing double-sided

::::::::::
Double-sided

:
Rowhammer re-

quires hammering adjacent DRAM rows within the same
bank. However, programmers

::::::::
attackers cannot directly see the

DRAM addresses of values they interact with. Instead, they
can only see the virtual addresses, which

:
.
:::::
These

:
are mapped

to physical address, and then
::::
which

::::
are

:::::::
mapped

:
to DRAM

addresses.
Exploits. As with Spectre, Rowhammer inspired
numerous exploits taking advantage of the ability
to modify inaccessible memory. This began with
Seaborn and Dullien [43] demonstrating how a flip
can be used both to perform a sandbox escape,
as well overwrite page table entries. Many exploits
followed [1], [17], [27], [32], [34], [37], [40], [45], [47]

:::
[1], [3], [17], [27], [32], [34], [37], [40], [45], [47],

demonstrating how Rowhammer can be used for privilege
escalation on mobile devices [47], flipping bits through a web
browser using JavaScript [16], as well as remotely attacking a
victim over a network [32], [45]. Gruss et al. [17] additionally
showed how the many proposed defenses against Rowhammer
could

:::::
many

:::::::::::
Rowhammer

:::::::
defenses

::::
can be defeated.

GhostKnight. To the best of our knowledge, only one prior
work, GhostKnight [55], has demonstrated how Spectre and
Rowhammer can be combined for a more powerful attack.
Since Spectre allows for accessing arbitrary memory within a
given address space, GhostKnight made the observation that
rapidly accessing a pair of aggressor addresses can cause flips
in the speculative domain. This effectively increases Rowham-
mer’s attack surface by allowing for bit-flips at addresses only
reachable under speculative execution.

III. SPECHAMMER

Our combined SpecHammer attack shows how Rowhammer
can be used enhance Spectre v1

::
to

:::::::
enhance

::::::
Spectre, bypassing

proposed defenses and relaxing the requirements for a Spectre
v1 gadget. We present two versions, :

:
a double gadget attack

and triple gadget attack, each striking a different trade-off
between the attack’s capabilities and the assumptions made
regarding the availability of gadgets in the victim’s code.

A. Double Gadget Attack: Removing Attacker Control

As discussed in Section II, a key limitation of Spectre is
the requirement

::
v1

::
is
:
that the attacker controls

::::
must

::::::
control

:
a

4

variable used as an index into a victim array
:::::
index. We relax

this restrictive requirement
::::::::
restriction

:::
by

:
using Rowhammer

to modify the array offset variable without its
::::
index

:::::::
variable

::::::
without

:
direct access.

1 if(x < array1_size){
2 victim_data = array1[x]
3 z = array2[victim_data * 512];
4 }

Listing 2: Pseudocode double gadget
Attack Overview. At a high level, the goal of the double
gadget exploit is to mount a Spectre v1 attack even if we do

::::::
attacks

::::
even

::
if

:::
the

:::::::
attacker

:::::
does not have direct control over

the array offset. We use Rowhammer to modify this offset
value, causing an array to access secret data , and leaking

::
and

:::
leak

:
it via a cache side-channel.

Listing 2 presents a gadget exploited by the first version
of our attack, which uses the same gadgets as Spectre v1. In
addition to assuming the presence of such code gadgets in
the victim’s code, we also assume that the victim’s address
space contains some secret data, which the attacker wants to
leak. Finally, unlike the Spectre v1 attack, we do not assume
any adversarial control over the values of x. Rather than con-
trolling x directly, the attacker instead exploits Rowhammer
to trigger a bit-flip in the value of x, such that array1[x]
accesses the secret data.
Step 1: Memory Templating. The first step in any
Rowhammer-based attack is to template memory in order to
find victim physical addresses that contain useful bit-flips,
i.e., a flip that will cause x to point to the desired data.
As described in Section II, templating essentially consists
of hammering many physical addresses until finding a pair
of aggressors that correspond to a victim row with a useful
flip. After finding a physical address with a suitable flip, our
memory massaging technique (see Section V) is used to ensure
that the value of x resides in this physical address, making it
susceptible to Rowhammer-induced bit-flips.
Step 2: Branch Predictor Training. After placing the vic-
tim’s code in a Rowhammer-susceptible location, the attacker
trains the victim’s branch predictor by executing the victim
code normally. As we are executing the victim’s code with
legal values of x, it is the case where x < array1_size,
which results in the CPU’s branch predictor being trained to
predict that the if in the first line of Listing 2 is taken. See
??

:::::::
Figure 1

::::
(left) for an illustration.

Step 3: Hammering and Misspeculation. Next, the attacker
hammers x, leading to the state in Figure ??

::::::
1(right), where a

bit-flip (marked in red) increases the value of x such that it
points to the secret data past the end of array1. It is also
necessary for the attacker to evict the value of x from the cache
beforehand, thus ensuring the next time it is read, the flipped
value in DRAM is used, as opposed to the previously cached
value. After evicting array1_size, the attacker triggers the
victim’s code. As array1_size is not cached, the CPU
falls back to

:::
uses

:
the branch predictor, and speculates forward

assuming that the branch
:::
if in Line 1 of Listing 2 is taken.

Next, due to the bit-flip affecting the value of x, the access to

array1 uses a malicious offset, resulting in secret being
used as an index to array2

:
’s
:::::
index, thereby causing a secret-

dependent memory block to be loaded into the cache. Finally,
the CPU eventually detects and attempts to undo the results
of the incorrect speculation, returning the victim to the correct
execution according to program order. However, as discovered
by Spectre [25], the state of the CPU’s cache is not reverted,
resulting in a secret-dependent element of array2 being
cached. See ??

:::::::
Figure 1

:::::
(right).

Step 4: Flush+Reload. Finally
::
To

:::::::
recover

:::
the

::::::
leaked

::::
data

::::
from

:::
the

::::::::::
speculative

:::::::
domain, the attacker uses a FLUSH+

RELOAD side channel [53] in order to retrieve the secret.
More specifically, the attacker accesses each value of array2
while timing the duration of each memory accesses. Since all
values of array2 were previously flushed from the cache,
the attacker’s timed access should be slow if no accesses
happened between the eviction and this stage of the attack.
However, if a timed access is fast, that memory block must
have been recently accessed. In this case, due to the access
to array2[secret*512] during speculation, the attacker
should observe a fast access when measuring the offset
secret*512, thereby learning the value of secret.

B. Triple Gadget Attack: Enabling Arbitrary Memory Reads

The attack presented in Section III-B assumes that the at-
tacker can use Rowhammer to flip arbitrary bits in the victim’s
physical memory. In practice, however, Rowhammer-induced
bit-flips are not sufficiently common to flip the number of bits
required

::
for

:
leaking arbitrary addresses. An attacker can flip, at

most, a few bits of the array offset, limiting the addresses she
can reach. In order to provide for arbitrary reads even with the
limited control provided by Rowhammer, we develop another
variation that utilizes “triple gadgets”. With just a single bit-
flip, an attacker can use a triple gadget to point an array offset
to attacker controlled data. This data can then be set to point
to any value in memory, allowing an attacker to leak arbitrary
data with a single flip, as detailed below.

1 if(x < array1_size){
2 attacker_offset = array0[x]
3 victim_data = array1[attacker_offset]
4 y = array2[victim_data*512];
5 }

Listing 3: Pseudocode triple gadget
Attack Overview. For the triple gadget attack, we utilize
a new type of code gadget; see Listing 3 for an example.
At a high level, while the original Spectre v1 assumed that
an attacker controlled variable x is used by the victim for a
nested access into two arrays (e.g., array2[array1[x]]),
here we assume that the victim performs a triple nested access
using x, namely, array2[array1[array0[x]]].

By using such gadgets, the attacker can modify the inner-
most array offset (x) such that array0[x] points to attacker
controlled data. This, in turn, allows him

::
her

:
to send arbitrary

offsets to array2[array1[]], resulting in the ability to
recover arbitrary information from the victim’s address space.
More specifically, our attacks proceeds as follows.

5

Training phase with legal value Attack phase with malicious value

Fig. 1: Example attack scenario
:::::::
Example

::::::
attack

::::::::
scenario.

:::::
(left)

:::::::
Training

::::::
phase

::::
with

:::::
legal

:::::
value.

::::::
(right)

::::::
Attack

::::::
phase

::::
with

::::::::
malicious

:::::
value.

Steps 1+2: Memory Profiling and Branch Predictor Train-
ing. As in Section III-A, the attacker starts by profiling the
machine’s physical memory, aiming to find physical addresses
that contain useful bit-flips. The attacker then executes the
victim’s code normally, thus training the branch predictor to
observe that the if in Line 1 of Listing 3 is typically taken.
Step 3: Hammering and Misspeculation. Next the attacker
hammers x, leading to the state in Fig. 2, in which a bit-flip
(marked in red) increases the value of x such that it points
past the end of array0, into attacker controlled data. As
in the case of Section III-A, after evicting array1_size,
the attacker triggers the victim’s code thus forcing

:::
after

::::::
evicting

::::::::::::::
array1_size

:
,
:::::
which

::::::
causes

:
the CPU to fall back

onto the branch predictor, speculatively executing the branch
in Line 1 of Listing 3 as if it was taken. The attacker
controls the value in address array0+x, which results in
an attacker-controlled value being loaded as the output of
array0[x] in Line 2. Proceeding with incorrect speculation,
the CPU executes array1[array0[x]] (Lines 2 and 3),
resulting in the attacker controlling (through array0[x])
which address the victim loads from memory. The value of
array1[array0[x]] is then leaked through the cache side
channel, following the access to array2 in Line 4.

Fig. 2: Triple gadget example
Step 4: Flush+Reload. Finally, as in the case of

::::::
Section

:
III-A,

the attacker uses a FLUSH+RELOAD side channel in order to
leak the value accessed during speculation.

Comparison to Double Gadgets. While the triple gadgets
assume

:::::
require

:
a triple-nested array access inside the victim’s

code, they also offer the advantage that multiple precise bit-
flips are no longer needed in order to read

::
for

:::::::
reading

:
the

victim’s data. In particular, as only one bit-flip is used to point
array0[x] into attacker-controlled data, multiple values can
be read using the same bit-flip value. In particular, by

::
By

varying the value of array0[x] and launching the attack
repeatedly, the attacker can dump the entire victim address
space using a single carefully controlled bit-flip.
Kernel Attacks. This attack is particularly dangerous when
performed on a gadget residing in the kernel. On a system
without

:
,
::
as

::
a
::::::
single

::::::
bit-flip

::::
can

::
be

:::::
used

::
to

:::::
read

:::
the

:::::
entire

:::::
kernel

:::::
space.

:::
At

::::
first

:::::
blush,

::
it

::::
may

::::
seem

::::
that

:
Supervisor Mode

Access Prevention (SMAP)enabled, the attacker can simply
allocate numerous pages containing the desired target value,
and have the victim offset point to these allocated pages. ,

:::::
which

:::::::
prevents

::::::::::::
kernel-to-user

:::::::
accesses,

::::
will

::::::
prevent

:::
the

:::::
attack

::
by

::::::::::
disallowing

:::
the

::::::
kernel

:::::
from

::::::::
accessing

::::
the

::::::::::::
user-controlled

:::
data

:::
on

:::
line

::
2
::
of

::::::::
Listing 3.

:::::::::
However,

::
in

::::::
Section

:::::
VI-B

:::
we

::::
show

:::
how

:::
to

::::::
bypass

:::
this

::::::::::
mitigation,

::::::::::::
demonstrating

::::
how

::
an

:::::::
attacker

:::
can

:::
use

:::::::
syscalls

::
to

:::::
inject

:::::
data

:::
into

:::
the

:::::::
kernel,

:::
and

:::::::::
afterwards

:::
use

:
a
::::::
single

::::::
bit-flip

::
to

:::::
point

::::
from

:::
the

::::::
gadget

::
to

::::
this

::::::::
controlled

:::::
kernel

:::::
data.

::::::
Since

::::::
SMAP

:::::
does

::::
not

:::::
block

::::::::::::::
kernel-to-kernel

:::::
reads,

:::
this

:::::::::
technique

::::::
allows

:::
for

::::::::::
performing

:::
the

:::::
triple

::::::
gadget

:::::
attack

::::
even

::::
with

:::::::
SMAP

:::::::
enabled.

:

While SMAP is disabled by default on our Haswell system,
attacks that work even through SMAP may also be possible.
For example, the attacker could utilize a syscall that allows
for controlling data within the kernel. Alternatively, she can
scan the kernel for a string of bits with value matching the
target address, and have the target array offset point to those
bits.

IV. MEMORY TEMPLATING

While the previous section provided general descriptions of
the core portion of the attack, two key prerequisite steps were
assumed to have already been taken:

:::
The

::::
high

::::
level

:::::::::
description

:::::::
provided

::
in
:::::::

Section
:::

III
:::::::
assumes

::::
two

::::
key

:::::::::::
prerequisites.

:::::
First,

the memory templating step to find a
:
is
::::
used

::
to
::::

find
:
useful flip-

vulnerable address, and .
:::::
Next,

:
the memory massaging step

:
is

::::
used to force the target victim variable to use this address. In
what follows

::
this

:::::::
section, we describe the memory templating

6

process. (Section V will detail the steps for stack massaging
both in user and kernel space.) ,

::::::::
deferring

:::::
stack

:::::::::
massaging

::
to

::::::
Section

:::
V.

:

The goal of templating is to obtain ”useful” bit-flips, mean-
ing they can be used to flip an array offset variable and trigger
a SpecHammer attack. Vulnerability to bit-flips depends on the
nature of an individual DIMM, requiring hammering many ad-
dresses to learn which ones contains

:::::
contain

:
useful flips.

:::
The

:::::::::
techniques

::::
used

:::
for

::::::::::
templating

::::::
borrow

:::::::
largely

::::
from

:::::::
existing

:::::
work,

::::
and

:::
we

:::::::::
therefore

:::::
keep

::::
the

:::::::::::
descriptions

:::::::::
high-level,

:::::::
referring

::::::
readers

:::
to

:::
the

:::::::::
appropriate

:::::
prior

:::::
work

::::::::::
[27], [37]

::
and

:::::
giving

::
a

::::
more

:::::::
detailed

::::::::::
description

::
in

:::::::::::
Appendix A

:
.

A. Obtaining DRAM row indices from virtual addresses

As explained in Section II, Rowhammer is drastically more
effective when two aggressor rows that pinch a victim row
are hammered in succession, a technique called double sided
hammering [23]. Finding flips via double sided Rowhammer
requires controlling three consecutive DRAM rows. However,
as unprivileged attackers, we have no direct way of determin-
ing how our virtual pages map to DRAM rows, preventing
us from performing double sided hammering. We therefore
take advantage of existing techniques [27], [37] to obtain
this mapping . These techniques manipulate the Linux buddy
allocator to first obtain a virtual to physical address mapping
[27]. Then, they use a timing side-channel to determine which

physical addressescorrespond to rows in the same bank [37],
reverse engineering the physical to DRAM address mapping.

The buddy allocator is Linux’s system for handling physical
page allocation. It consists of lists of free pages organized
by

::::
must

::::::::
therefore

:::::::
reverse

:::::::
engineer

::::
this

::::::::
mapping

::::::
before

:::
we

:::
can

:::::
begin

::::::::::
hammering.

::::::
Since

::::::
virtual

::::::
address

:::::
map

::
to

:::::::
physical

::::::::
addresses,

::::::
which

::
in

::::
turn

::::
map

::
to

::::::
DRAM

:::::
rows,

:::
we

:::::
must

:::::
obtain

::::
both

:::
the order

:::::
virtual

::
to
::::::::

physical and migrate type
:::::::
physical

::
to

::::::
DRAM . The order is essentially the size of a free block of
memory. The smallest size is order 0, which consists of a
single page. An order x sized block consists of 2x contiguous
pages. Typically, requests for pages from user space (for
example, via mmap) are served from order-0 pages. Even if
the user requests many pages, she will likely be served with
a non-contiguous block of fragmented pages. If there are no
free blocks of the requested size, the smallest available free
block is split into two halves, called buddies, and one buddy
is used to serve the request, while the other is placed in the
free list of the order one less than its original order. When
pages return to the freelist, if their corresponding buddy is
also in the freelist, the two pages are merged and moved to
a higher-order freelist [15]. The pagetypeinfo file shows
how many free blocks are available for each order.

::::::::
mappings.

:

In order to control sets of contiguous DRAM rows, we begin
by obtaining a large chunk of contiguous physical memory via
mmap. For the eventual memory massaging step, described in
Section V, the bit-flip needs to reside in a contiguous block of
memory at least 16 pages long. Additionally, as we will see
in the following paragraph, a 2MiB block will be helpful in

obtaining physical addresses. To obtain a
::
For

:::
the

:::::
latter,

:::
we

:::
use

:::::
Pessl’s

::::::::
DRAMA

:::::::::
technique

::::
[37]

:
.
:::
For

:::
the

::::::
former,

:::
we

::::
only

::::
need

::
the

::::::::
physical

::::::
address

::::
bits

::::
used

:::
to

::::::::
determine

:::
the

::::::::::::
corresponding

::::
rank,

:::::
bank,

:::
and

::::::::
channel.

:::
For

:
a
:::::::
Haswell

::::::::
processor

:::::
using

::::::
DDR3,

::::
these

:::
are

:::
the

::::::
lowest

:::
21

::::
bits.

:::::
Thus,

:::
we

::::
can

:::
use

:::
the

:::::::::
techniques

::::::::
presented

::
in

::::::::::
RAMBleed

:::::
[27],

:::
to

::::::
obtain

:
a
::::::::::

conitguous
:
2MiB

contiguous block, we first allocate enough memory to drain
all smaller sized blocks, tracking the amount left with the

::::
page,

::::::
giving

:::
us

:::
the

:::::
lower

:::
21

:::::::
physical

:::::::
address

::::
bits.

:::::
Since

:::
this

::::::::
technique

:::::
relies

:::
on

:::
the

::::::::
recently

::::::::
restricted

:
pagetypeinfo

file. Then, we allocate a large chunk of memory via mmap,
guaranteeing that all pages belong to contiguous chunks of the
needed size.

Note that while our machine’s Linux kernel (version 4.17.3)
allows for use of the pagetypeinfo file, more recent
kernel versions restrict the use of this file to privileged users.
However, since it is used exclusively for knowing when certain
blocks of memory have been drained, attacks without this file
are possible by using a timing side channel to determine when
requested blocks were not available, forcing the allocator to
take a longer execution path [47],

:::
we

::::
use

::
a

::::
new

::::::::
technique

:::
that

:::::
relies

::
on

:::
the

:::::::::::::
world-readable

:::::::::::
buddyinfo

::
file

:::::::
instead

:::
(see

::::::::::
Appendix A

:
)
:::
The

:::::
time

:::::::
required

:::
for

::::
this

::::
step

::
is

:::::::::
unaffected

::
by

::::
using

:::
the

::::
new

::::::::::::
buddyinfo

:::::::
technique.

Physical to DRAM map for Ivy Bridge/Haswell (taken
from [37]).

To obtain the virtual to physical memory mapping, we use
technique presented in [27]. Having already obtained a 2MiB
block, we can learn the lowest

:::
For

:::::
newer

::::::::::::
architectures

:::
that

:::
use

:::::
DDR4

::::::::
memory,

:::
we

::::::
follow

:::
the

:::::::::::
methodology

::
of

:::::::::
TRRespass

::::
[14]

:
,
:::::
using

::::::::::
transparent

::::::::::
hugepages

::::::
which

::::
are

:::::::
enabled

:::
by

::::::
default

::
in

:::::
Linux

::::::
kernel

:::::::
version

::::
5.14,

::::
the

::::
latest

:::::::
version

::
at

:::
the

::::
time

::
of

:::::::
writing.

::::
Note

::::
that

::
for

::
a
::::::::::
one-DIMM

:::::::::::
configuration,

::::
only

::
up

::
to

:::
bit

:
21 bits of a physical address by finding the block’s

offset from an aligned address. We obtain this offset by timing
accesses of multiple addresses to learn the distances between
addresses on the same bank. By identifying the distance for
each page within the the block, we can retrieve the offset. With
the mapping from virtual to physical to DRAM addresses, we
can sort virtual addresses into aggressor and victim addresses
corresponding to three consecutive DRAM rows.

:
is
:::::::

needed,

::::
even

:::
on

:::::
newer

::::::::::::
architectures.

:::
For

:::::::::::
two-DIMM

::::::::::::
configurations,

:
it
::
is
::::::::
possible

::
to

:::
use

::::::::
memory

:::::::::
massaging

:::::::::
techniques

:::
to

:::::
obtain

::
up

::
to

:::::
4MB

::
of

::::::::::
contiguous

::::::::
memory.

Next, we require the physical to DRAM address mapping.
We can obtain it using Pessl’s timing side-channel [37]. This
technique takes advantage of DRAM banks’ rowbuffer. Upon
accessing memory, charges are pulled from the accessed row
into a rowbuffer. Subsequent accesses read from this buffer,
reducing access latency. All rows that are part of the same
bank share a single rowbuffer. Therefore, consecutive accesses
to different rows within the same bank will have increased
latency, since each access needs to overwrite the rowbuffer.
By accessing pairs of physical addresses and categorizing them
into fast and slow access, an attacker can learn whether pairs
lie in the same bank. Attackers can compare the bits of enough

7

addresses that lie in the same bank to retrieve the mapping
from physical addresses to DRAM.

Since Pessl et. al. [37] obtained the mapping function for
multiple memorycontrollers, including the one used for our
experiments, we can simply use the mapping function given
in Figure 6.

B. Hammering Memory.

With all the obtained memory sorted into rows, we initialize
the aggressors and victims with values reflective of our desired
flips. In our case, we seek to increase an array offset value to
point to secret data, meaning we want to flip a particular victim
bit from 0 to 1. We therefore initialize potential victim rows to
contain all 0s. Since double sided hammering is most effective
when the victim bit is pinched between two bits of the opposite
value [23], [27], we set aggressor rows to all 1s, giving a 1-0-1,
aggressor-victim-aggressor stripe configuration.
Inducing Flips. As done in prior work and existing Rowham-
mer templating code [16], [44], [50], [54], we repeatedly read
and flush aggressor rows from the cache to ensure each read
directly accesses DRAM and causes disturbance effects on
neighboring rows. After doing a fixed number of reads, we
read the victim row to check for any bit-flips, which in this
case would mean a bit set to 1 anywhere in the victim row’s
value. We save addresses containing useful flips (i.e., a bit-flip
that would cause an array offset to point to a secret), and move
onto the memory massaging phase. Note that the above steps
neglect to flush the victim address cache lines. Consequently,
when we try to read the victim to check if we induced a flip,
we will likely be reading cached initial data.
The Need for Useful Flips.

::::
Upon

::::::::
running

:::::::
existing

::::::::::
Rowhammer

:::::
code

::::::
[16]

::
on

:::::::::
numerous

:::::::
DDR3

::::::::
DIMMs,

:::
we

::::::::::
experienced

::
a
:::::::::
somewhat

::::
low

::::::::
flip-rate

::
of
:::::::::::::

approximately
::

2

::
to

::
5

::::
flips

::::
per

:::::
hour.

::::::::
However,

::::
for

:::
our

::::::::::::
SpecHammer

::::::
attack,

::
we

:::::::
require

:::::::
specific

:::::::
bit-flips

:::
(a

::::::
single

:::
bit

:::::::
position

::::
out

:::
of

:
a

::::
4KiB

::::::
page),

:::
to

:::::
point

::::
from

:::
an

:::::
array

:::
to

::
a

::::::
secret,

:::::::
meaning

::
it

:::::
would

::::
take

:::
an

:::::::::
infeasibly

:::::
long

:::::::
amount

:::
of

::::
time

:::
to

::::
find

:::
the

:::::::
required

::
bit

:::
in

:::
the

:::::::
average

::::
case.

::::
One

::::::
option

::
to

:::::::::
overcome

:::
this

:::::
would

:::
be

::
to

::::
test

:::::
many

:::::::
DIMMs

::::
until

:::::::
finding

:::
one

::::::::::
particularly

:::::::::
susceptible

::
to

::::::::::::
Rowhammer,

:::::::
limiting

:::
the

::::::
attack

::::
only

:::
to

::::
such

:::::::::
susceptible

::::::::
DIMMs.

::::::::
However,

::::
we

::::::::
observed

:::
an

::::::::
oversight

::
in

::::::
existing

::::::::::::
Rowhammer

::::::::::
repositories

:::::::::
pertaining

::
to
::::

the
:::::
issue

::
of

::::::
cached

::::::
victim

:::::
data,

::::::
which

::::::
causes

::
a
::::::::::

susceptible
:::::::

DIMM
::
to

::::::
appear

:::::
sturdy

:::::::
against

:::::
flips,

:::::
when,

:::
in

::::
fact,

:
a
::::

vast
::::::::

majority
::
of

:::
flips

::::
are

::::::
simply

:::::
being

:::::::
masked

::
by

:::::::
cached

::::
data.

:::
By

:::::::::
modifying

::::
these

:::::::
existing

:::::::::::
repositories,

:::
we

::::::
found

::::
that

:::
the

:::::
same

:::::::
DIMMs

::
are

::::::::::
vulnerable

::
to

:::::::::
thousands

::
of

:::::
flips

:::
per

:::::
hour,

:::::::
allowing

:::
us

::
to

::::::
perform

::::
our

::::::
attack

::
on

::::::::
DIMMs

::::
that

::::
were

:::::::::
previously

:::::::
thought

::
to

::
be

:::::
safe.

Under-reported Flip-rate in Prior Work. Upon in-
spection of numerous public Rowhammer repositories [16],
[44], [50], [54] , designed to test a DIMMs vulnerability
to rowhammer

:::::::
DIMM’s

:::::::::::
vulnerability

::
to

:::::::::::
Rowhammer, we ob-

served that
::::
they

:
all made the victim

:::
row

:
cache oversight

mentioned in the previous paragraph. By performing the above
steps, reading a victim row to check for a bit-flip will likely

result in reading the cached initialization data, leading to
severe under-reporting of the actual number of flips obtainable
on any tested DIMMS.

:::
Any

::::
flips

::::
that

:::
are

::::::::
reported

:::
are

:::::
likely

:::
due

::
to

::::::
victim

:::
data

:::::
being

:::::::::::::
unintentionally

::::::
evicted

::::
from

:::
the

:::::
cache

:::
due

::
to

:::::
other

:::::::
memory

::::::::
accesses

::::::::
replacing

:::::
those

:::::
cache

:::::
lines.

::
In

:::::::::::
Appendix C

::
we

:::::::
describe

:::::::::::
experiments

:::
we

:::::::::
conducted

::
to

:::::
prove

:::
that

:::::
cache

::::::
effects

:::
are

::::::
indeed

::::::::::
responsible

:::
for

:::::::
masking

:::
bit

::::
flips.

Comparison of Rowhammer Techniques. In order to fully
understand the effect this oversight had on finding bit-flips,
we compared prior work with enhanced versions that includes
the

:::
our

:
victim cache flush . The results

:::::::::::
modification.

:::
The

::::::
results

::::
are

:
presented in Table Icompare the amount

of bit-flips obtained using existing, public Rowhammer
repositories with our code that includes victim cache flushes.

:
. We ran each program using double sided hammering over a
two hour period with a 1-0-1 stripe configuration, then for 2
hours testing for using 0-1-0. The total flips over both runs
are shown in the table.

Note that the repository for Rowhammer.js [16] contains an
error that uses virtual addresses rather than physical addresses
when determining which addresses reside on the same bank,
and is thus split into 2 entries: one for the unmodified
Rowhammer.js and the other for the same code with the error
removed excluding the cache flush oversight. Finally, we used
TRResspass [14], the latest Rowhammer templating repository,
exclusively for DDR4, since it uses techniques designed to
bypass DDR4 exclusive defenses.

:::
The

::::::::
changes

:::
we

:::::
made

::
to

::::
these

::::::::::
repositories

:::
are

:::::::
detailed

:::
in

::::::::::
Appendix B

:
.

:::
We

:::::::
perform

:::
our

::::::
DDR3

:::::::::::
experiments

::
on

::
a
:::::::
Haswell

:::::::
i7-4770

::::
CPU

::::
with

:::::::
Ubuntu

:::::
18.04

:::
and

::::::
Linux

:::::
kernel

:::::::
version

::::::
4.17.3.

:::
For

::
the

::::::
DDR4

:::::::::::
experiments,

:::
we

:::
use

::
a
::::::
Coffee

:::::
Lake

::::::::
i7-8700K

::::
CPU

::::
with

::::::
Ubuntu

:::::
20.04

::::
and

:::::
Linux

::::::
kernel

:::::::
version

:::::
5.8.0.

:

Results. For DDR3, in the worst case when compared to
Rowhammer.js with the addressing error removed, our code
improved the flip rate by 248x in the worst case, and

::
by

:
a

:::::
factor

::
of

::::
x525

:
in the best casea factor of 525. .

:
As for TRRess-

pass, we found that modifying the the code to include victim
cache flushes resulted in 5.1x

::
6x

::
to

:::
8x flips on DDR4 DIMMs.

While prior , Rowhammer surveys have found larger numbers
of flips [8], [22], they did so using techniques unavailable on
general purpose machines. In the case of [22], the goal was to
understand DIMMs vulnerability to Rowhammer at the circuit
level, and thus DIMMs were tested via FPGAs to remove
and higher-level sources of interference that may have reduced
the number of flips. Similarly, [8] sought to achieve flips on
servers, and their techniques can only work on multi-socket
systems. In contrast, we use code that

::
is designed for users to

test their own machines for Rowhammer bugs, and show how
a simple modification

:::::::
ensuring

::::
that

:::
the

::::::
victim

::::
row

::
is

::::::
flushed

:::::
before

::
it
::

is
::::::::

checked
:
can drastically increase the number of

flips.

::
In

::::
order

::
to
::::::
verify

::::
these

:::::::::
additional

::::
flips

::::
were

:
a
:::::
result

::
of

:::::
cache

:::::::
flushing,

:::
we

:::::::::
performed

:::::::::
additional

:::::::::::
experiments

::
to

::::::
verify

:::
that

:::
data

::::
was

::
in

::::
fact

:::::
being

::::::
pulled

::::
from

:::::::
memory

::::
and

:::
not

:::
the

:::::
cache

::
for

:::::
each

:::
flip.

::::::
These

::::::::::
experiments

:::
are

:::::::
detailed

:::
in

::::::::::
Appendix C

:
.

8

height Model Samsung (DDR3, 4GB) Axiom (DDR3, 4GB) Hynix (DDR3, 4GB) Samsung (DDR4, 4GB
:
)

:::::
Samsung

:::::
(DDR4)

: :::::
Samsung

:::::
(DDR4)

rowhammer-test [44] 1 0 0 -
:
- -

:

rowhammerjs [16] 4 9 2 -
:
- -

:
rowhammerjs (using correct

::::::::
rowhammerjs

::::::
(corrected

:
addresses) 15 38 32 -

:
- -

:

rohammerjs with victim flushes 7,883 11,005 7,943 -
:
- -

:

TRResspass [50] - - - 1,694
::
947

:::
2,976

:::
2,134

TRResspass with victim flushes - - - 8,752
:::
7,916

: ::::
17,958

: ::::
15,611

TABLE I: Comparison between prior Rowhammer techniques and our new
::::::::::::
cache-flushing

:
techniquewhich includes flushing

the victim row after initialization. Since the techniques listed in the top 4 rows are designed for DDR3, we did not run them
on DDR4 DIMMs, signified by a “-”. Similarly, TRResspass is designed for DDR4 and was not run on DDR3DIMMs

:
.
::::
Note

:::
that

::::::::::::
rowhammerjs

:::::
refers

::
to

:::
the

:::::
code

::
in

:::
its

:::::::
“native”

::::::::
directory.

:

Fig. 3: Linux memory organization

V. MEMORY (STACK) MASSAGING

With possession of a useful, flip-vulnerable address, the
next step is to force the victim variable into this address. The
target victim is a variable used as an offset into an array. Such
variables are most often allocated as local variables, and hence
reside on the victim’s stack. Therefore, in order to flip such
variables and trigger the attack, we need to place the victim’s
stack on the flip-vulnerable page obtained from the templating
step. Only one prior work has demonstrated stack massaging
[40], and used

:::
(the

::::::::::::
now-disabled)

:
page deduplication to do so,

which has since been disabled by default.
Note that bit-flips correspond to particular DRAM ad-

dresses, which are fixed to specific physical address. Physical
addresses, however, can be mapped to various different virtual
addresses through a page table mapping. Thus, the goal is to
force the victim to use a particular physical page.

Furthermore, if the victim resides in kernel code, the at-
tacker needs the ability to massage kernel stacks which adds
an additional layer of complexity compared to massaging user
space stacks, since an unprivileged attacker cannot directly
manipulate (allocate and deallocate) kernel pages. While prior
work has demonstrated kernel massaging by forcing PTEs to
use certain pages, they either used probabilistic methods [43]
, which are

::
use

::::::::
methods too imprecise for stack manipulation,

or use
:::::
kernel

:::::
stack

::::::::::::::
massaging [43].

:::::
This

:::::::
existing

::::::::
technique

:::::
simply

::::::::
unmaps

:::
the

:::::::::::::
flip-vulnerable

:::::
page

::::
and

:::::
fills

:::::::
physical

:::::::
memory

::::
with

::::::
PTEs

::::
until

::::
one

:::::
uses

:::
the

::::::::
recently

:::::::::
unmapped

::::
page.

::::
For

::::::
kernel

:::::
stack

::::::::::
massaging,

::::
new

:::::::
threads

:::::
need

:::
to

::
be

:::::::
spawned

::
to

:::::::
allocate

:::::
kernel

::::::
stacks.

:::::
Since

::::::::
spawning

::::
new

::::::
threads

:
is
::::::::::::::::

resource-intensive
:::::::
(relative

:::
to

::::
PTE

::::::::::
allocation),

:::
we

::::::
cannot

::::
spray

::
a
::::::::

majority
:::

of
::::::::

memory
::::
with

::::::
stack

::::::
threads

::::
and

:::::
must

:::::::::
manipulate

:::::::
memory

::::
into

::
a

::::
state

::::
that

:::
that

::::::::::
maximizes

:::
the

::::
odds

::
of

:
a
::::::
limited

::::
spray

:::::
using

:::
the

::::::
target

:::::
page.

:::::
Other

::::
prior

:::::
work

:::
has

:::::::::::
demonstrated

::::
more

:::::::::::
deterministic

::::::::::
techniques,

:::
but

::::
uses

:
methods

exclusive to Android devices [47].
In this section we develop a novel technique for massag-

ing kernel memory by taking advantage of the Linuxbuddy
allocator (explained in Section A)

::::::
Linux’s

::::::::
physical

:::::
page

:::::::
allocator,

:::
the

:::::::
”buddy

::::::::
allocator”

::::
(see

:::::::::::
Appendix A

:
), and its per-

CPU (PCP) list system. Before describing our technique, we
provide background on the memory structures we manipulated
to achieve our result. An overview of these systems is shown
in Figure 3.
Memory Zones. Within the buddy allocator,

::::
pages

::
of

:::::::
memory

::
are

:::::::::
organized

::::::
Within

:::
the

::::::
buddy

::::::::
allocator, in addition to being

sorted by order, free pages are also sorted by their zone. Zones
represent ranges of physical addresses. Each zone has a partic-
ular watermark level of free pages, where if

:
.
::
If the zone’s total

free memory ever drops below the watermark level, requests
are handled by the next most preferred zone. For example, a
process may request pages from ZONE NORMAL, but, if the
number of free NORMAL pages is too low, the allocator will
attempt to service the request from ZONE DMA32 [15].
Page Order. Within each zone, pages are

:::::
sorted

::::
into

:::::
blocks

::
by

:::
size

:
,
::::
also

:::::
called

::::
their

:::::
order,

::::::
where

::
an

::::::
order-x

:::::
block

:::::::
contains

::
2x

:::::::::
contigous

::::::
pages.

::::
The

::::::::
allocator

::::::
always

::::::::
attempts

::
to

:::::
fulfill

:::::::
requests

::::
from

:::
the

:::::::
smallest

:::::
order

:::::::
possible,

:::
but

::
if
:::
no

:::::
small

::::
order

:::::
blocks

:::
are

::::::::
available,

::
a
:::::
larger

:::::
block

::::
will

::
be

:::::::
broken

::
in

::::
half,

:::
and

:::
one

::::
half

::
is

::::
used

::
to

:::::
fulfill

::::
the

::::::
request

:::::
[15].

:

Migrate-types.
:::::
Pages

:::
are

:
further organized by migrate-

type. Migrate-types determine whether the virtual-to-physical
address mapping can be changed while the page is in use.
For example, if a process controls virtual pages that map to
physical pages with the migrate-type MOVABLE, it is possible
for

::
to

::::::
replace

:
the physical pageto be replaced with a different

one, while keeping the virtual address the same by simply
changing the mapping ,

:::
by

::::::::
mapping

:::
the

:::::
same

::::::
virtual

::::::
address

::
to

:
a
::::::::
different

:::::::
physical

:::::::
address [28].

PCP Lists. Finally, the PCP list (also referred to as the
Page Frame Cache) [6] is essentially a cache to store recently
freed order-0 pages. Each CPU corresponds to a set of first-in-
last-out lists organized by zone and migrate-type. Whenever
an order-0 request is made, the allocator will first attempt to
pull a page from the appropriate PCP list. If the list is empty,

9

pages are pulled from the order 0
:::::
order-0

:
freelist of the buddy

allocator. When pages are freed, they are always placed in the
appropriate PCP list. Even if a contiguous higher-order block
is freed, each individual page is placed on a PCP list, and they
are merged only when they are returned from the PCP list to
the buddy allocator freelist. Thus, the system serves to quickly
fetch pages that were recently freed on the same CPU, rather
than needing direct access to the buddy allocator.

A. User Space Stack Massaging

Building on existing user space massaging techniques [6],
[27], the main goal is to free the flip-vulnerable page currently
in the attacker’s possession, and then force a victim allocation
that will use the recently freed page. In the case of stack
massaging, this means forcing a new stack allocation. The
techniques presented here follow similar steps as those done
in prior work [6], [27]. While prior works use this process to
massage pages allocated via mmap, we massage victim stacks.
Stack allocation. User space stacks are allocated upon
spawning a new process or thread, and use ZONE NORMAL,
migratetype MOVABLE memory. Additionally, even though
they typically use more than one page, the request is handled
as multiple order-0 requests, meaning pages are pulled from
a PCP List. Pages obtained from mmap calls in user space
also use NORMAL, MOVABLE memory, meaning stack pages
and the controlled flip-vulnerable page are of the same type.
Therefore, freeing the flip-vulnerable page via unmap will
place the page in the same PCP list used for stack allocation.
Massaging Steps. Now understanding Linux stack allocation,
stack massaging is performed using the following steps:
Step 1: Fodder Allocations. First, we make “fodder” alloca-
tions to account for any allocations made by the victim before
allocating the stack. It is possible the target variable does not
reside on the first page of the victim’s stack. Therefore, we
must first calculate how many pages will be used by the victim
before the victim allocates the stack page containing the target,
and allocate such number of fodder pages.
Step 2: Unmapping Pages. We then free the flip-vulnerable
page, placing it in the PCP List, and then free the fodder pages,
placing them in the same list above the flip-vulnerable page.
Step 3: Victim Allocation. Finally, we spawn the victim
process, forcing it to perform the predicted allocations, and
target stack allocation. Any allocations that occur prior to the
target allocation will remove the fodder pages from the PCP
List, forcing the stack to use the target page.
Results. This technique works with about 63% accuracy,
which is acceptable since it only needs to be done once to
mount the attack. If this step fails, we can attempt massaging
again, and expect it to succeed within two tries.

:::
We

:::
can

:::::
check

:::
for

:
a
::::::::

massage
::::::
failure

:::
by

:::::::
running

:::
the

::::::::::
subsequent

::::
steps

::
of

:::
the

:::::
attack

::::
(i.e.

::::::
calling

:::
the

::::::
victim

:::::::::
containing

:::
the

::::::
gadget

:::
and

:::::::::
hammering

:::
our

::::::::::
aggressors)

:::
and

::::::::
checking

:::
for

::::
data

::
on

:::
the

:::::
cache

:::::::::::
side-channel.

::
If

::
no

::::
data

::
is

::::::::
observed,

:::
we

:::::::::
re-attempt

:::::::::
massaging.

B. Kernel-Space Stack Massaging

Targeting gadgets in the kernel similarly requires forcing
stack variables to use specific, flip-vulnerable pages. Like with
user-space stack allocation, a kernel stack is allocated upon
creation of a new thread or process, and that stack is used for
all syscalls made by that thread or process. However, unlike
user-space stacks, kernel stacks use UNMOVABLE memory,
meaning they pull pages from PCP list different from that
used by user space mmap and unmap calls. Therefore, the
attacker needs a method to force the kernel to use “user pages”
(MOVAVABLE pages) instead of “kernel pages” (UNMOV-
ABLE pages). We observe from Seaborn [43] that the kernel
does use user pages when memory is under pressure, and build
on Seaborn’s techniques to allow for a more precise memory
massaging technique that allows for massaging kernel stacks.

Fig. 4: Physical Page Stealing

Allocator Under Presure. As mentioned above, when the
zone’s total number of free pages falls below the watermark,
the next most preferred zone is used. However, as zones
include multiple migrate-types, it is possible for the freelist
of the requested migrate-type to be empty, yet have enough
total zone memory to be above the watermark. In this case,
the allocator calls a stealing function that steals pages from
given “fallback” migrate-types and converts them to the type
originally requested. As shown in Fig. 4, this function attempts
to steal the largest available block from the fallback type. For
UNMOVABLE memory, the first fallback is RECLAIMABLE
memory, and the second is MOVABLE memory.
Kernel Massaging Steps. The steps required for kernel stack
massaging are similar to those of user space stack massaging.
The key difference is that the attacker must first apply memory
pressure to force the kernel into using user pages.
Step 1: Draining Kernel Pages. As non-privileged attackers,
we cannot directly allocate UNMOVABLE pages. However,
each time an allocation is made via mmap a page table entry
(PTE) is needed to map the virtual and physical pages. Since
PTEs use kernel memory, each mmap call uses both user
and kernel memory. However, multiple PTEs can fit within
a single page, and the address of a PTE depends on its
corresponding virtual address. We need to efficiently make
allocations large enough such that each PTE needs a new
page, but small enough such that the process is not killed for
allocating too much memory. Mapping pages at 2MB aligned
addresses provides the smallest allocation size such that each
PTE allocates a new page. Such allocations are made until no

10

MOVABLE pages remain, using the pagetypeinfo file to
monitor the amount of remaining pages. Subsequent mappings
will use RECLAIMABLE pages for PTEs. Once the necessary
pages have been depleted, the next kernel allocation will use
the largest available MOVABLE block.

::
On

:::::::::
machines

::::::::
without

::::::
access

:::
to
::::::::::::::::
pagetypeinfo

:
,
:::

we

::::::
instead

:::
use

::::::::::::
buddyinfo

::::::
(which

::
is
::::::

world
::::::::

readable
:::
for

:::
all

:::::
kernel

:::::::::
versions)

::::
and

:::::::
monitor

::::
the

::::::::
draining

:::
of

::::::::::
MOVABLE

:::
and

:::::::::::::
UNMOVABLE

::::::
blocks

::::::::
together

::::::::::
(performing

:::::
Step

::
1

:::
and

::::
Step

::
2

::
at

:::
the

::::::
same

:::::
time),

:::::
only

:::::::
draining

::::::
order

::
4

::
or

::::::
higher

::::::::::::
UNMOVABLE

:::::::
blocks.

::::
(See

::::::::::::
Appendix A

::
for

::
a

::::
more

:::::::
detailed

:::::::::
explanation

:::
of

:::::::::::
buddyinfo

::::::::
compared

::
to

:::::::::::::::
pagetypeinfo

:
.

Step 2: Draining User Pages. Memory is now in a state that
will force the kernel to use the largest available MOVABLE
block. However, we need the kernel to use a specific single
page (the page containing a bit-flip). We, therefore, need to
ensure the target page resides in this block. It is advantageous
to make the largest available block as small as possible to
improve the chance that the kernel uses the target page for
its stack allocation. Thus, the next step is to drain as many
high-order free blocks as possible, without dropping the total
number of free-pages below the water mark

::::::::
watermark. In our

machine, we were able to drain all blocks of order 4 or higher.
Step 3: Freeing Target Page. The goal is to free the
target page such that is

:
it
:
resides in the largest available block.

However, freeing this page will send it to the PCP rather than
the buddy allocator freelist. Even when it is free from the
PCP, if it does not have any free buddies, it will remain in the
order-0 freelist. The freed target page needs to coalesce into
an order-4 block, such that the single largest remaining free
block contains the flip-vulnerable target page. Fortunately, as
explained in Section IV, we have already guaranteed the target
page is part of an order-4 (or larger) block

:::
(i.e.

:::
our

:::::
target

::::
page

:
is
::::
part

::
of

::
a
::::::
2MiB,

:::::::
order-10

::::::
block). Therefore, we can free the

target page and all of its buddies to ensure it will coalesce
into the largest available block.

The only remaining
::
last

:
obstacle is the PCP list, since even

when unmapping a contiguous high-order block, all pages
are placed on the appropriate PCP list. However, the Linux
zoneinfo file shows how many pages reside in each PCP
list, and the maximum length of each list, at any given time.
Thus, additional pages can be unmapped until the number of
pages in the the PCP list reaches the maximum length (186
pages on our machine

:::::::
machines

:
according to zoneinfo).

This forces pages to be evicted from the PCP list and sent
to the buddy allocator freelist, placing the target page in the
largest free block of MOVABLE memory.
Step 4: Allocating Kernel Stack. Having freed the target
page, and knowing the next kernel stack allocation will use
user memory, we can now force a kernel stack allocation.
However, freeing pages to force the target page out of the
PCP will have slightly alleviated memory pressure, meaning
some UNMOVABLE pages will be free. Kernel stack alloca-
tions will consume these pages, and subsequent allocations
will convert the block containing the target page into an
UNMOVABLE block. Additionally, because of the

::::::
kernel’s

Experimental Configurations
::::
SMAP

: ::::::::
pagetypeinfo

:::
THP

:::::
Leakage

::::::::::::
i7-4770,DDR3,Linux

::::
4.17.3

: ::
OFF

: :::::
Readable

: :::
N/A

:::
20b/s

:::::
i7-7700,

::::
DDR4,

::::
Linux

::::
5.4.1

::
ON

: ::::::
Restricted

:::::
madvise

:::
6b/m

::::::
i9-9900K,

::::
DDR4,

::::
Linux

::::
5.4.1

::
ON

: ::::::
Restricted

:::::
madvise

:::
6b/m

::::::::::::::
i7-10700K,DDR4,Linux

:::
5.4.0

: ::
ON

: ::::::
Restricted

:::::
madvise

:::
6b/m

TABLE II:
:::
List

:::
of

::::::::::::
configurations

::::
used

:::
for

:::
our

::::::::::
experiment.

:::
All

:::::::::
mitigations

:::
are

::
in
:::::

their
::::::
default

:::::::::::::
configurations.

buddy system, the block will be split in half, with one half
being used for the kernel stack, and the other half moved to
the lower order UNMOVABLE freelist. The target page may
be in either half, and allocations must continue to be made to
ensure the target page is used for a kernel stack.

Therefore, we use a kernel stack spray, allocating many
kernel stacks until the UNMOVABLE pages are all depleted
again. We perform the kernel stack spray simply by spawning
many threads. Each thread can spin in an empty loop until the
spraying is done. Then, each thread can ,

::::
and

::::
then

:
be tested

one-by-one by having the thread make the victim syscall and
hammering the target variable until a data leakis observed

::
we

::::::
observe

::
a
::::
leak. Once the thread with the target page is found,

the other threads can all be released. With this final step, we

::
are

::::::::
released.

:::
We

:
can now flip a stack variable residing within

::
in the kernel.
Results. This technique has approximately 66% accu-
racy . Similar to the user space massaging, we

::::
with

:::
the

::::::::::::::
pagetypeinfo

::::::::
technique

::::
(60%

::::::::
accuracy

::::
with

:::::::::::
buddyinfo

:
).
:::
We

:
expect it to succeed within two attempts.

VI. GADGET EXPLOITATION

At this point, we have forced victim stacks in both user
space and kernel space to use flip-vulnerable addresses,
making us ready to .

::::
We

:::
can

:::::
now

:
flip array offset values,

force a misspeculation, and leak target values. As a proof of
concept, we demonstrate end-to-end double and triple gadget
attacks on example victims in user and kernel spaces. These
examples serve to verify the attack’s ability to leak data. The
double gadget attack is demonstrated on a

::
in user-spacevictim,

using our user stack massaging technique, and the triple gadget
attack in kernel space, using our kernel stack massaging
technique

:
in

:::
the

::::::
kernel.

Setup. The machine used for both attacks uses
:::
For

:::
the

:::::
double

:::::::
gadget

::::::
attack,

:::
we

::::
use

:
a Haswell i7-4770 CPU with

Ubuntu 18.04 and Linux kernel version 4.17.3, the default
version shipped on our machine. The DRAM used consists of
a pair of Samsung DDR3 4GiB 1333MHz DIMMs.

:::::::
DIMMs.

:::
For

:::
the

:::::
triple

:::::::
gadget

:::::::
attacks,

:::
we

::::
use

:::
the

:::::
same

::::::::
machine

::
in

:::::::
addition

::
to

::::::::
machines

:::::
with

:::::
Kaby

:::::
Lake

:::::::
i7-7700,

:::::::
Coffee

::::
Lake

::::::
Refresh

:::::::::
i9-9900K,

::::
and

:::::::
Comet

:::::
Lake

:::::::::
i7-10700K

::::::::::
processors.

:::
The

:::::
latter

:::::
three

::::::::
machines

::::
each

::::
use

:
a
::::::
DDR4

::::
8GB

:::::::
DIMM

:::
and

:::
run

:::::
Linux

::::::
Kernel

:::::::
version

:::::
5.4.1,

:::::
5.4.1,

::::
and

:::::
5.4.0,

::::::::::
respectively.

:::::
These

::::::::::::
configurations

:::
are

::::::
shown

::
in

:::::::
Table II

:
.
::::
Note

::::
that

:::
the

:::
two

:::::
newer

:::::::::
processors

:::::
have

:::::::::
additional

::::::::
defenses

::::
(i.e.,

:::::::
SMAP

:::
and

:::::::
restricted

:::::::::::::::
pagetypeinfo

::::::
access)

:::
not

::::::::
supported

:::
by

:::::::
Haswell.

:::
We

:::::::::::
demonstrate

:::
our

::::::
attack

:::::
even

:::
in

::::
the

::::::::
presence

:::
of

::::
such

:::::::
defenses.

::::::::
KASLR

::
is

:::::::
enabled

:::
on

:::
all

:::::::::
machines.

:::::::::::
Additionally,

:::::::::
transparent

:::::::::
hugepages

:::::::
(THPs)

:::
are

:::
set

::
to
:::::

their
::::::
default

::::::
setting

::
of

:::::
being

:::::::::::::
user-allocatable

:::
via

:::
an

:::::::
madvise

:::::::
syscall.

:

11

Stealing stack canary example.

A. Double Gadget – Stack Canary Leak

In this section we demonstrate how stack canaries can be
stolen using a double gadget residing in user space code.
Stack Canaries. A stack canary is a value placed on the stack,
adjacent to the return pointer, as a defense mechanism against
buffer overflow attacks. An attacker attempting to overflow a
buffer and write to a return pointer will inadvertently overwrite
the canary. Upon jumping to an addresses pointed to by a
stack return pointer, the stack canary can be compared to
its original value. If the canary has been overwritten, the
victim is alerted that the return pointer has been tampered
with, and the program ceases execution. ,

::::::
which

::::::
causes

:::
the

:::::::
program

::
to

::::
halt.

:
Due to their low-cost , but

::
and

:
effectiveness

at preventing buffer overflow attacks, canaries have long
been widely deployed as effective, light-weight stack overflow
defense mechanisms [10].

Even though they are randomly generated, stack canaries
of a child process belonging to a parent process will always
have the same stack canary. Thus, if a child process’s canary
is leaked, it is possible to perform a buffer overflow attack
on any child belonging to the same parent

:
,
::::::::
assuming

::::
that

::
the

:::::
code

:::::::
suffers

::::
from

::::
the

:::::::
memory

::::::::::
corruption

:::::::::::
vulnerability.

For example, OpenSSH handles encryption through child
processes spawned by a single daemon. Leaking the

:::::
canary

of any one of these child processes allows for circumventing
this defense on any other child to leak secret keys.

1 uint16_t array1, array2;
2 if(x < array1_size){
3 victim_data = array1[x]
4 z = array2[victim_data * 512];
5 }

Listing 4: Double gadget
Example Victim. The victim for this example attack
lives within a thread spawned by the attacker, and the victim
consists of a double gadget like the one shown in Listing 4,
where each array is of type uint16_t (Line 1). The arrays
live in memory shared by the victim and attacker, but as
previously mentioned, attacks without this requirement are
possible through the use of

::
by

:::::
using

:
a PRIME+PROBE side

channel
::::

[35]. The code is compiled such that stacks in-
clude secret canaries and cease execution if a canary is ever
modified.

::::::::
modified. Having the victim reside in an attacker-spawned

thread allows for user space stack massaging, but extends to
any process that can be forcibly spawnedby the attacker, as
can done to

:
,
::::
such

:::
as OpenSSH [27].

Stealing Canaries. Due to their location at the end of the
victim stack, just past the end of target arrays, stack canaries
act as a prime target for the double gadget attack. Reading the
canary requires flipping lower-order bits of the array offset,
such that the corresponding array access points just past the
end of the array to the stack canary.

A stack canary is typically 32 to 64-bits long and stored just
before

:
at

:::
the

:::::::
address

:::
just

::::::
below

:
the return pointer. Spectre v1

attacks steal a single “word” of data per malicious offset value,
where a word corresponds to the innermost array’s data type.
In our victim, array1 is a uint16_t array. Each malicious
value of x points to and steals an 16 bit value, meaning the
gadget must be used four times, each with a different malicious
value to steal a 64-bit stack canary. An example is pictured
in Fig. ??. Here, a 64 bit stack-canary is split up across four
addresses, each containing two bytes. The left side shows a
legal access used in the training phase, and the right side shows
bit-flips used to retrieve portions of the canary.
Target Flip. The Rowhammer flip

::::::
bit-flip needs to push the

the offset past the end of the victim array and point to the stack
canary. Since the stack canary is separated into multiple words,
we may either find a victim row with multiple bit-flips, or
allow the victim to naturally cycle through values and hammer
with the necessary timing to push the offset to different words
of the canary. We use the latter approach, since we observe
few rows that contain multiple flips on our machine.
Memory Templating and Massaging. We perform memory
templating as described in Section IV to find useful bit-flips.
The victim offset resides at a particular page offset within the
stack, meaning the required flip must occur at the same offset.
Memory was templated for approximately 2.5 hours to find
this specific flip. The page containing this flip is unmapped
and the victim thread is spawned, forcing the offset variable
within the victim thread to use the flip-vulnerable page.
Triggering Spectre. The victim is left to run with legal
values used for its offset, training

:::::
which

::::::
trains

:
the branch

predictor. We wait for the victim to set the offset to the
appropriate value corresponding to the given target word of
the canary. For this example, the victim and attack code run
synchronously, but FLUSH+RELOAD can be used to accurately
monitor the execution of victim code to provide attacker
synchronization [52]. We then evict the offset from the cache,
forcing the gadget to use the flipped value in a state of
mis-speculation

::::::::::::
misspeculation. One word of the canary is

accessed and used as an offset to load data into the cache,
allowing us to use FLUSH+RELOAD to retrieve the target. The
victim value is left to change, and the hammering is repeated
to retrieve the rest of the canary.
Leakage Rate. As mentioned before, the array accesses
16 bits at a time, meaning 16 bits are leaked per flip and
instance of FLUSH+RELOAD. We observed a leakage rate of
approximately 8b/s, meaning the entire canary is leaked in
about 8 seconds with 100% accuracy.

B. Triple Gadget - Arbitrary Kernel Reads

This second example demonstrates how the triple gadget
within a kernel syscall can be used to achieve arbitrary reads
of kernel memory. This is particularly dangerous since kernel
memory is shared across all processes, meaning an attacker
with access to kernel memory can observe values handled by
the kernel for any process running on the same machine. This
may include sensitive data such as user passwords. Such data is
typically only accessible with sufficient privilege, but arbitrary

12

reads using this attack gives unprivileged attackers access to
anything reachable by the kernel.

1 if(x < array1_size){
2 attacker_offset = array0[x]
3 victim_data = array1[attacker_offset]
4 y = array2[victim_data*512];
5 }

Listing 5: Triple Gadget
Example Victim. The example victim for this attack is
a syscall in which we inserted a triple gadget, as shown in
Listing 5. Since syscalls execute with kernel privilege, any
data within the kernel can be leaked. For this example, we
target a 10-character string within the syscall’s code that is
out of bounds from the target arrays. Additionally, as with
the previous example, the attacker and victim share the arrays
used in the triple gadget.
Memory Templating. As done in the double gadget attack,
we begin by finding a useful bit-flip. The purpose of the flip
here is to force the victim array (in the kernel) to point to the
attacker-controlled datain the user space heap. Thus, a specific
high order bit-flip is needed to point from kernel space to user
space.

::
the

::::::
victim

::
to

::::::
region

::
of

::::
data

::::
we

::::::
control.

:
To reduce the

time required to find the bit-flip, we configure the victim such
that it can use an array offset at any position in the stack, by
including victim variables at every offset position. Therefore,
there is no need to find a flip at a specific offset; we only need
to change a specific (bit 45 in our case)

::
bit

:
at any aligned 64-

bit word within the page.
Attacker Controlled Data. We allocate many addresses
within user space using the MMAP FIXED flag to fix the
addresses such that the single flip will cause the kernel
array to point to the

:::
One

:::::::
method

:::
of

:::::::::
controlling

:::::
data

::
in

:::
the

::::::
victim’s

:::::::
address

::::::
space

::::::
would

:::
be

::
to

::::::
simply

::::::::
allocate

:
a
:::::

large

:::::::
memory

::::::
chunk

:::
on

:::
the

::::
user

::::::
space

:::::
heap

:::
and

::::
fill

::::
this

:::::
chunk

::::
with

:::
the

:::::::
desired

::::::
value.

::::
The

:::::::
bit-flip

::::::
would

::::
then

::::::
cause

:::
the

:::::
victim

:::
to

:::::
point

:::::
from

::::::
kernel

::::::::
memory

:::
to

::::
our

::::
data

:::
in

::::
user

:::::::
memory.

:::::::::
However,

::::
this

::::::::
requires

::::::::
breaking

:::::::
Kernel

:::::::
Address

:::::
Space

::::::
Layout

:::::::::::::
Randomization

:::::::::
(KASLR)

::
in

:::::
order

::
to
::::::::

precisely

::::
know

:::
the

:::::::::
difference

:::::::
between

:::
the

::::::
target

:::::
kernel

:::::::
address

:::
and

:::
the

::::::::
controlled

::::
user

:::::
space

:::::::
address.

::::::::::::
Furthermore,

:::::::::
Supervisor

:::::
Mode

::::::
Access

:::::::::
Prevention

::::::::
(SMAP)

::::::
blocks

::::
the

::::::
kernel

::::
form

:::::::
reading

:::
user

::::::::
memory,

::::
and

::
is
::::::::

enabled
::
by

:::::::
default

:::
on

:::
the

::::
last

::::::
several

:::::::::
generations

:::
of

:::::
Intel

:::::::::
processors

::::
[2]

:
.
:::::::::
Therefore,

::::
we

::::::
instead

::::
inject

::::
our

::::
data

::::
into

:::
the

::::::
kernel

::
at

::::
sets

::
of

:::::::::
addresses

:::
that

:::::
differ

::::
from

:::
the

:::::::::::::::
target-flip-address

:::
by

::
a

:::::
single

:::
bit.

:

SMAP Bypass.
::
We

::::::::
borrow

:::::
from

::::::
kernel

::::::::::
heap-spray

::::::
attacks

:::::::::
[12], [21],

::::::
which

:::::::::::
demonstrate

:::::::
methods

:::
of

:::::
filling

:::
the

:::::
kernel

:::::
heap

::::
with

:
attacker controlled data. Additionally, the

user-controlled data needs to point to the virtual address
containing the desired secret data . In this case, the

::::
These

:::::::::
techniques

::::
take

:::::::::
advantage

::
of

:::::::
syscalls

:::::
such

:::
as

:::::::::
sendmsg

:
or

:::::::
msgsnd

:
,
:::::
which

:::::::
allocate

:::::
kernel

:::::
heap

:::::::
memory

:::::
using

::::::::
kmalloc

:::
and

::::
then

:::::
move

:::
user

::::
data

::::
into

::::
these

::::::
kernel

::::::::
addresses.

:::
To

::::::
prevent

::::
these

:::::::
syscalls

::::
from

:::::::
freeing

:::
the

::::
data

:::::
before

:::::::::
returning,

:::::::
attackers

:::
use

:::
the

:::::::::::::
userfaultfd

:::::
syscall

::
to
::::
stall

:::
the

::::::
kernel.

::::
This

::::::
syscall

:::::
allows

:::::
users

:::
to

:::::
define

:::::
their

::::
own

::::::
thread

::::
that

::::
will

::::::
handle

:::
any

::::
page

:::::
faults

:::
on

:::::::::
specified

::::::
pages.

::::::
When

:::
the

::::::::
attackers

::::
call

::
a

:::::::::::
data-inserting

::::::
syscall

:::::
(such

::
as

:::::::::
sendmsg

:
)
::::
they

::::
pass

::::::::
arguments

::::
with

:
N

:::::
pages

:::::
worth

::
of

::::
data,

::::
but

::::
only

:::::::
allocate

:
N
:::
-

::
1

::::::
physical

:::::
pages.

::::::
When

:::::::::
sendmsg

::::::
attempts

:::
to

::::
copy

::::
the

::::
data

::::
from

::::
user

::
to

:::::
kernel

::::::
space,

::
it
:::::

will
::::::::
encounter

::
a
:::::

page
:::::
fault

::
on

::::
the

::::
final

::::
page.

::::
The

::::::
thread

::::
fault

::::::::
handler,

:::::::
assigned

:::
by

::::::::::::::
userfaultfd,

:
is
::::::::::

configured
::
to

::::
spin

:::
in

:::
an

::::::
endless

:::::
loop,

:::::::
leaving

:::::::::
sendmsg

:::::
stuck,

::::
after

:::::::
having

::::::
copied

::
N
:::
-

::
1

:::::
pages

:::
of

::::
user

::::
data

::::
into

:::::
kernel

::::::::
memory.

Stack Data Insertion.
:::::
While

::::
the

::::::
above

::::::::
method

::
is

:::::
useful

:::
for

::::::::
inserting attacker-controlled data points to a string

within the kernel syscall that is outside the range of all
arrays. This example attack assumes the victim does not have
kernel address space layout randomization (KASLR) enabled,
simplifying the process of obtaining kernel addresses. Past
work has shown how kernel addresses can be obtained even
through KASLR [?], meaning such techniques can be applied
to attack systems with KASLRenabled.

::::
into

:::
the

::::::
kernel’s

:::::
heap,

:::::::::::
heap-insertion

::
is
::::
not

:::::
useful

:::
for SpecHammer

::::
since

::::::
kernel

::::
heap

::::::::
addresses

::::
will

:::::
never

:::::
have

:::::
only

::::
one

:::
bit

::
of

:::::::::
difference

:::::
from

:::::
kernel

:::::
stack

::::::::
addresses.

:::::::::
However,

::::::::
numerous

:::::::
syscalls,

::::::::
including

::::::::
sendmsg

:
,
::::
take

:
a
::::
user

::::::
defined

:::::::
message

:::::::
header

:::::
which

::
is

:::::
placed

::
on

:::
the

::::::
kernel

:::::
stack.

::
To

::::::
ensure

::::
that

:::
this

:::::::
inserted

:::::
value

:::
will

::::
land

::
on

::
an

:::::::
address

::::
that

::
is

:::
one

::::::
bit-flip

:::::
away

::::
from

::::
the

::::::::
flip-target,

:::
we

:::::
spawn

:::::
many

:::::::
threads

::::
that

:::
all

:::
use

::::::::::
sendmsg

:
to

::::::
insert

:::::
kernel

::::
stack

:::::
data,

:::::
giving

::::
high

::::::::::
probability

:::::
(87%)

::
of

:::
an

::::::
address

::::::
match.

Controlling Page Offsets.
:::
The

:::::
only

:::::::::
remaining

:::::
issue

::
is

::
the

::::::
offset

::::::
within

:::
the

:::::
page.

::::::
Stack

::::::
offsets

:::
for

::::::
kernel

:::::::
syscalls

::
are

:::::::
always

:::::
fixed

:::
and

:::
we

:::::
need

::
to
::::::

insert
::::
data

::::
into

:::
an

::::::
address

::::
with

::
a
:::::

page
::::::

offset
::::

that
::::::::

matches
:::::

that
:::
of

::::
our

:::::::::
flip-target.

:::::::::
Fortunately

::::
for

::::
the

::::::::
attacker,

:::::
there

::::
are

:::::::::
numerous

:::::::
syscalls

::::
(e.g.

: ::::::::::
sendmsg,

::::::::::
recvmsg,

::::::::::::
setxattr,

::::::::::::
getxattr,

:::::::
msgsnd

:
)
::::
that

:::::
allow

:::
for

::::::
writing

:::
up

::
to

:::
256

:::::
bytes

:::
of

:::
the

:::::
kernel

:::::
stack,

::::::
giving

::
a

:::::
range

:::
of

:::::
offset

::::::::
options.

:::::::::::
Additionally,

:::::
these

::::::
syscalls

:::
are

::::::
called

::::
from

:::::
other

:::::::
syscalls

::
as

:::::
well,

::::
(e.g.

::::::::
socket,

::::::
send,

::::::::::
sendto,

:::::::
recv,

::::::::::::
sendmmsg,

:::::::::::
recvmmsg)

::::
and

::::
each

::
of

:::::
these

::::
use

::
a
:::::::

varying
:::::::

amount
:::

of
:::::
stack

:::::
space

::::::
before

:::::
calling

::::
the

:::::::::
previously

:::::
listed

:::::::
syscalls,

::::::::::
essentially

:::::::
allowing

:::
the

::::::
attacker

:::
to

::::::
“slide”

::::
the

:::::::
position

:::
of

:::
the

:::::::
inserted

:::::
data

:::
up

:::
and

::::
down

::::
the

:::::
stack.

:

::
As

:::
an

:::::::::
example,

:::
we

::::
find

:::::
that

:::
the

:::::::::::::
target-variable

:::
of

:::
the

:::::::
example

::::::
gadget

::::::::
presented

::
in
:::::::

Section
::::::
VII-B

:::
has

::
a

::::
page

:::::
offset

::
of

:::::::
0xd20

:::::
(when

::
it
:::

is
:::::
called

::::::
during

::::
the

::::::::
spawning

:::
of

:
a
::::

new

::::::
thread)

:::
and

:::::::::::
sendmmsg

:::
can

::
be

:::::
used

::
to
:::::::

control
::::
data

:::
on

:::
the

:::::
kernel

:::::
stack

:::::
from

::::::
0xcf0

::
to

::::::
0xd70

:
.
:::::
Thus,

:::
the

:::::
triple

::::::
gadget

:::::
attack

:::
can

:::::
work

::
by

:::::::
pointing

:::::
from

:
a
::::::
victim

:::::
kernel

:::::::
address

::
to

::
an

::::::
attacker

:::::::::
controlled

::::::
kernel

:::::::
address,

:::::::
allowing

:::
the

::::::
attack

::
to

::::
work

::
in

:::
the

:::::::
presence

:::
of

::::::
SMAP.

:::::
Since

:::::::
KASLR

::::
only

::::::::::
randomizes

:::
the

::::::
kernel’s

:::::
base

:::::::
address,

:::
the

:::::::::
difference

:::::::
between

:::::
these

::::::::
addresses

::::::
remains

::::::::
constant,

:::::::
thereby

::::::::::
neutralizing

::::::::
KASLR.

:

Kernel Stack Massaging. Next, we run the kernel stack
massaging technique from Section V-B, forcing the syscall
to use the flip-vulnerable page for its array offset. Numerous
threads are allocated

:::
We

:::::::
allocate

:::::::::
numerous

::::::
threads

:
as part of

the stack spray, and there is a possibility none of the kernel

13

stacks contain the flip-vulnerable page. Therefore, each thread
is checked

::
we

:::::
check

:::::
each

::::::
thread

:
for the target page, and if

the page is not found,
::
we

::::::
repeat the templating and massaging

steps are run again until a target page lands within a kernel
stack. Overall, combined with the time taken to find useful
flips, it takes a total of 34 min on average to land a useful flip
within the kernel.
Triggering Spectre. Finally, the thread containing the
target page makes the syscall containing the victim gadget,
which runs repeatedly with a loop of of legal offset values
in order to train the branch predictor. The offset value is
occasionally hammered and evicted from the cache, caus-
ing the inner most array to point to user data in a state
of mis-speculation

::::::::::::
misspeculation. The FLUSH+RELOAD side

channel is used to confirm the target secret (in this case, the
value of the victim’s string) has been correctly leaked. We
then modify the attacker-controlled data to point to any secret
value within the attacker’s address space, and the hammering
is repeated to leak the next target value.
Offline Phase Performance

::::
When

:::::::
running

:::
on

:::
the

:::::::
Haswell

:::::::
machine,

:::
in

:::::
which

:::::::
SMAP

::
is

:::::::
disabled

::::
and

:::::::::::::::
pagetypeinfo

:
is
:::::::::::

unrestricted,
:::
the

:::::
time

:::::
taken

::
to

::::
find

:::::
pages

:::::
with

:::::
useful

::::
flips

:::
and

::::
land

::
a
:::::
such

:
a
:::::

page
:::
in

:::
the

::::::
kernel

::
is

:::
34

::::::::
minutes.

:::::
While

:::
our

::::
new

:::::::::::
buddyinfo

:::
and

::::::
SMAP

::::::
bypass

::::::::::
techniques

::::::
present

::::::
slightly

:::::::
reduced

::::::::::
accuracies,

::::
they

::::::::::
conversely

::::::
reduce

::
the

::::
time

::::::
needed

::
to

::::
find

::::
flips

:::
and

::::
land

::
a
:::::
useful

:::::
page.

::::
The

:::::::::::
buddyinfo

::::::::
technique

::::::
relaxes

:::
the

:::::::::::
requirements

:::
on

:::::::
draining

::::
user

::::::
pages

::
(to

::::
only

:::::::
draining

:::::
order

:
4
:::
or

:::::
larger

::::::
blocks,

:::::
rather

:::::
than

:::::::
draining

::
all

::::::
blocks),

::::::::
meaning

::::
each

:::::::::
massaging

:::::::
attempt

:::::
takes

::::
less

::::
time.

:

::::::::::
Furthermore,

::::
the

::::::
SMAP

:::::::::
technique

::::::
allows

::
a

:::::
range

::
of

:::
bits

::
to

::
be

::::::
useful,

:::::
since

:::
we

:::::
need

:::
any

:::
flip

::::
that

::::::
points

::::
from

:::::::
(victim)

:::::
kernel

:::::
stack

::
to

:::
(our

::::::::::
controlled)

:::::
kernel

:::::
stack.

::::::
These

:::
two

::::::
regions

::
of

:::::::
memory

:::
are

:::::
much

:::::
closer

:::::::
together

:::
the

::::
case

:::
of

:
a
::::::
kernel

::::
stack

:::::
victim

::::
and

::::::::
controlled

::::
user

:::::
space

::::::
region,

:::::::
meaning

:::
we

::::
can

::::
make

:
a
::::::::
selection

::::::
among

:::::
many

:::::
lower

:::::
order

::::
bits

::::
(bits

::
5
:::::::
through

:::
28)

:::::
rather

::::
than

:::::
being

::::::
forced

:::
to

:::
flip

::::
the

::::
only

:::::::::
high-order

::::
bit

:::
that

:::::
points

:::::
from

:::::
kernel

::::::
space

::
to

::::
user

:::::
space

::::
(bit

::::
45).

:::::
Thus,

:::::
while

:::
this

::::::::
technique

::::::::::
introduces

::::::
another

:::::::::::
probabilistic

:::::::
element

:::::
(with

::::
87%

::::::::
accuracy)

::::
the

::::
time

:::::::
needed

::
to

::::
find

::
a
::::::

single
::::::
useful

:::
flip

::
to

:::::::
perform

::::
the

:::::
attack

:::
is

::::::::
reduced.

::::::::::::
Consequently,

::::
the

:::::
attack

::::::
requires

:::
an

:::::::
average

:
9
:::::::

minutes
:::

on
:::::::
average

::
to

::::
find

::
a

:::::
useful

:::
flip

:::
and

::::
land

::
it

::
in

:::
the

::::::
kernel

::::::
across

::
all

:::::::::
machines.

:

Leakage Rate. array1 is of type uint8_t, meaning
each misspeculation leaks 8 bits of data. After performing
the prerequisite templating and massaging steps, the leakage
occurs at a rate of about 2 to 3 words per second, meaning 16
to 24b/s

::
on

::::::
DDR3. We leaked the target string with 100%

accuracy.
:::::
When

:::::::
running

:::
on

:::::::
DDR4,

::::::::::
multi-sided

::::::::::
hammering

:
is
::::::::

required,
::::::

which
:::::::
requires

:::::
more

::::
time

::::
per

:::::::::
hammering

::::::
round,

:::::::::::
consequently

:::::::
reducing

:::
the

:::::::
leakage

::::
rate

::
to

:::::
about

::
4
::
to

:::::::
19b/min

::::::
(6b/min

:::
on

::::::::
average),

::::
also

:::::
with

:::::
100%

::::::::
accuracy

:::
on

::::
the

::::
three

:::::
DDR4

::::::::
machines

::::::
listed

::
in

:::::::
Table II.

:

VII. GADGETS IN THE LINUX KERNEL

The threat the combined attack poses is two-fold. First,
it can bypass taint tracking, which is the only proposed

defense that would block all types of Spectre gadgets [4], [51]
. Second, the restriction for what qualifies as a Spectre gadget
is relaxed such that the attacker no longer needs to control the
offset variable. To understand the impact this

::
the

:::::::::::
SpecHammer

relaxation has on the number of exploitable gadgets in real-
world code, we run a gadget search tool, Smatch [29], on the
latest Linux kernel.

A. Gadget Search.

Smatch. Smatch was initially designed for finding bugs
in the Linux kernel. However, after Spectre was discovered,
a check-spectre function was added, which searches for
gadgets. It searches for segments of code in which an

:
a nested

array access occurs after a conditional statement, and the
offset into the array is controlled by an unprivileged user.
It additionally checks if the nested accesses occur within the
maximum possible speculation window, and if the accesses use
an array index nospec macro, which sanitizes array offsets
by bounding them to a specified size.
Tool Modification. We modified the tool to remove the
condition of an attacker controlled offset, and searched only
for gadgets in which the attacker does not control the offset.
In addition, we added a function to search for triple gadgets
as well, which checks if the value of a nested array access is
used as an offset for a third array access.
Results. When running the original, unmodified
check-spectre function on the Linux kernel 5.6, we
find about 100 double gadgets, and only 2 triple gadgets.
Modifying the function to search for gadgets vulnerable to the
combined attack SpecHammer

::::::
gadgets

:
leads it to report about

20,000 double gadgets, and about 170 triple gadgets.
Bypassing Taint Tracking. Such a large number of
potential gadgets exposes more holes for Spectre attacks on
sensitive, real-world code. Furthermore, oo7 [51], which is the
only defense that can efficiently mitigate all forms Spectre
[4]

:
of

::::::::
Spectre

::::
[4],

::
does not work against SpecHammer

gadgets. This defense identifies nested array access that use
an untrusted array offset value (i.e. a value coming from
an unprivileged user). Any gadgets using such an offset are
considered ”

:
“tainted,” and are prevented from performing out

of bounds memory accesses. However, since the newly dis-
covered gadgets use variables that cannot be directly modified
by attackers, they are considered trustworthy, and would go
unmitigated by oo7.
Additional Gadgets. Even after making the modification to
smatch to include gadgets without attacker-controlled offsets,
we observed that smatch was still unable to detect all gadgets
that were potentially exploitable by

:::::::
potential

::
SpecHammer

:::::::
gadgets, demonstrating that existing gadget detection tools

are not sufficient for finding all exploitable code.

B. Kernel Gadget Exploit

To understand the nature of gadgets that remained unde-
tected by smatch, we chose to explore the kernel source
code by hand to identify potential gadgets that may be newly
exploitable with the flexibility granted by Rowhammer. For

14

example, in addition to manipulating array offsets, Rowham-
mer bit-flips allow for the indirect modification of pointers
as well. Modifying a single struct pointer can lead to a
chain of pointer dereferences ending with secret-dependent
cache accesses. This points to a new type of gadget compared
to those presented in Spectre [25], as it relies on pointer
deferences rather than nested array accesses. One particular
example of this lies in the kernel’s page_alloc.c file.

Fig. 5: alloc context struct pointer

page alloc.c This file contains the code used for all
physical page allocation. The get_page_from_freelist
function in particular contains the SpecHammer gadget, with

:
;
:
a simplified version with only the relevant code lines is

presented in Listing 6. Note that the gadget does not contain
cosecutive array accesses, but rather dereferences consecutive
struct pointers, and uses the result for an array access. The
allocation_context (ac) struct pointer, shown in Fig-
ure 5, is particularly important, as many variables used in the
function are obtained from this pointer.

1 get_page_from_freelist{
2 struct alloc_context *ac;
3 struct zoneref *z = ac->preferred_zoneref;
4 struct zone *zone;
5

6 for(zone=z->zone;zone;z=find_next_zone(z,ac->
zone_highidx);

7 zone=z->zone){
8
9 preferred_zone = ac->preferred_zoneref;

10 idx = preferred_zone->classzone_idx;
11
12 z->lowmem_reserve[idx];
13 }
14 }

Listing 6: Code Gadget for the double gadget attack
Forcing Misspeculation By manipulating the value of
ac to point to a region of attacker-controlled code, it
is possible to control all variables obtained from an ac
dereference, and control the execution flow of the allocator
function

::::::
victim’s

:::::::::
execution

:::::
flow. More specifically, an at-

tacker can allow the function to run normallyto teach
::
run

::
the

::::::::
function

:::::::::
normally,

::::::::
teaching

:
the predictor that the for

loop at Listing 6, Line 6 will be entered. Then, ac can
be modified by hammering such that the dereferences at
Lines 3 (z = ac->preferred_zoneref) and 6 (zone
= z->zone) set zone equal to 0 or NULL. This triggers
a missspeculation

::::::::::::
misspeculation, since the for loop should

terminate immediately, but will actually begin its first iter-
ation due to the prior training. Furthermore, ac has been
set such that during this misspeculation, the chain of deref-
erences at Listing 6 Lines 9 and 10 causes idx to equal
secret data, causing a secret-dependent access at Line 12
(lowmem_reserve[idx])which can be recovered by a ,

:::::::::
recoverable

:::
by

:
cache side channel.

Results. To empirically verify this behavior, we instrumented
page alloc.c file to flip bits as needed, we

::
and

:
found it is

possible to manipulate the function’s control flow and cause
a misspeculation that leaks kernel data. We recovered an 8bit

::::
8-bit character inserted in the kernel code that is normally out
of range of the manipulated array, by inserting code that uses a
FLUSH+RELOAD channel. This can be replaced with PRIME+
PROBE , to retrieve secrets without modifying page_alloc.

VIII. MITIGATIONS

Since the presented attacks rely on combining Spectre and
Rowhammer, defenses can protect against the new attacks by
either mitigating Spectre or Rowhammer.
Spectre. Developing a defense focused on the Spectre aspects
is likely the more difficult option. While other variants of
Spectre received effective and efficient mitigations [4], [30],
[46], Spectre v1 was seen as more as an inherent security flaw
caused by branch prediction with no simple solution.

Taint tracking, the only defense previously known to protect
against all forms of Spectre v1 [4], [51], is thwarted by the
new combined attack, as it relies on a Spectre limitation not
present in the combined attack. Other defenses [5], [38], [39]
designed to protect against Spectre v1 provide incomplete
protection, working only in specific cases, and often come
at a prohibitively high performance cost [4].
Rowhammer. For Rowhammer, on the other hand, numer-
ous hardware and software defenses have been developed to
prevent or detect bit-flips, beginning with PARA [23]. PARA
initially randomly refreshes rowswith a low probability for
each row. As pairs of rows are repeatedly accessed, the refresh
probability for the potential victim rows is increased

:
,
:::::
giving

::::
more

::::::
weight

::
to

::::
rows

::::
with

::::::::
repeated

:::::::
accesses. However, PARA’s

main weakness is that it
::
this

:
does not guarantee a refresh for

::::::::
protecting

:
rows that are about to flip, but rather only grants

a high probability of refresh. For example, the triple gadget
attack presented here needs just

:::
our

:::::::::::
triple-gadget

::::::
attack

:::
that

::::::
requires

::
a single bit-flip, and PARA cannot provide guaranteed

protectionagainst this flip
::::::
PARA

::::
does

:::
not

::::::::
guarantee

:::::::::
protection.

A defense similar to PARA, target row refresh (TRR) does
guarantee a refresh whenever two aggressor rows pass a cer-
tain activation threshold. TRR is already widely implemented
in DDR4, and was long believed to be the strongest defense
against Rowhammer. However, TRResspass [14] has recently
shown how bit-flips can be obtained despite TRR by per-
forming scattered aggressor row accesses. Furthermore, it was
shown that by applying this technique, DDR4 is

:::
was

:::::
found

::
to

::
be

:
even more susceptible than DDR3 to bit-flips [22], and

we have presented how to obtain an even greater number of
DDR4 flips with modifications to TRResspass.

:
.

Another common hardware defense against bit-flips is er-
ror correcting codes (ECC). Initially designed to catch bit-
flips induced by natural errors, these functions are able to
correct single flips, and detect up to two flips, within a
given row. Commonly used in high-end servers, ECC were
believed to be an effective, albeit expensive, defense against

15

Rowhammer. However, ECCploit [9] demonstrated a tim-
ing side-channel produced by single-flip corrections. This
side channel can be used to detect flips, one at a time,
even under ECC, allowing

:
,
::::
that

::::::
allows

:
attackers to find

rows with more than two flips. By flipping three or more
bitssimulatenously

::::::::
containing

::::::::
multiple

::::
flips.

:::
By

::::::::::::
simulatenously

::::::
flipping

::::::::
multiple

:::
bits, Rowhammer attacks can go undetected

by ECC. Additionally, RAMBleed [27], demonstrated how
bit-flips can be used to read unaccessible memory requiring the
attacker to know where flips have occurred rather that relying
on the effects of a flip propagating through a victim machine.
The timing side-channel can be used to tell if a flip occured,
even if it was corrected by ECC, making it

:
,
::::::
making

:::::
ECC

:
an

ineffective defense.

IX. CONCLUSION

We have demonstrated how Spectre and Rowhammer can
be combined to circumvent the only defense believed to work
against all forms of Spectre v1. Furthermore, we found the
number of potential gadgets in the Linux kernel increases
drastically with this new attack. Proof-of-concept gadgets
show the attack’s ability to leak data from both user and kernel
space victims. In future work we would like

:::
seek

:
to understand

the effect of relaxing gadget requirements on other sensitive
codebesides the Linux kernel.

:
.

REFERENCES

[1] Z. B. Aweke, S. F. Yitbarek, R. Qiao, R. Das, M. Hicks, Y. Oren,
and T. Austin, “Anvil: Software-based protection against next-generation
rowhammer attacks,” ACM SIGPLAN Notices, vol. 51, no. 4, pp. 743–
755, 2016.

[2]
::
A.

:::::::
Baumann,

:::::::
“Hardware

::
is

::
the

:::
new

:::::::
software,”

::
in

:::
16th

:::::::
Workshop

::
on

:::
Hot

::::
Topics

::
in

:::::::
Operating

::::::
Systems.

:::
1em

:::
plus

:::::
0.5em

::::
minus

:::::
0.4em

::::
ACM,

::::
2017,

::
pp.

:::::::
132–137.

[3]
:
E.
:::::::

Bosman,
::
K.

:::::
Razavi,

::
H.

::::
Bos,

:::
and

::
C.

::::::
Giuffrida,

::::::
“Dedup

::
est

:::::::
machina:

::::::
Memory

:::::::::
deduplication

::
as
:::

an
::::::
advanced

:::::::::
exploitation

::::::
vector,”

::
in

::::
2016

:::
IEEE

::::::::
symposium

::
on
::::::

security
:::

and
::::::

privacy
:::
(SP)

:
.
::

1em
::::

plus
::::
0.5em

:::::
minus

::::
0.4em

::::
IEEE,

::::
2016,

:::
pp.

:::::::
987–1004.

[4] C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. Von Berg, P. Ortner,
F. Piessens, D. Evtyushkin, and D. Gruss, “A systematic evaluation of
transient execution attacks and defenses,” in 28th {USENIX} Security
Symposium ({USENIX} Security 19), 2019, pp. 249–266.

[5] C. Carruth. (2018) Rfc: Speculative load haredning (a spectre variant #1
mitigation.

[6] A. Chakraborty, S. Bhattacharya, S. Saha, and D. Mukhopadhyay,
“Explframe: exploiting page frame cache for fault analysis of block
ciphers,” in 2020 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2020, pp. 1303–1306.

[7]
::
G.

::::
Chen,

::
S.

::::
Chen,

::
Y.

::::
Xiao,

:
Y.
:::::

Zhang,
::
Z.

:::
Lin,

:::
and

::
T.

::
H.

:::
Lai,

::::::::
“Sgxpectre:

:::::
Stealing

::::
intel

:::::
secrets

::::
from

::
sgx

:::::::
enclaves

::
via

::::::::
speculative

::::::::
execution,”

::
in

:::
2019

::::
IEEE

:::::::
European

::::::::
Symposium

::
on

::::::
Security

:::
and

::::::
Privacy

:::::::
(EuroS&P)

:
.

:::
1em

:::
plus

::::
0.5em

:::::
minus

::::
0.4em

::::
IEEE,

:::::
2019,

::
pp.

:::::::
142–157.

[8] L. Cojocar, J. Kim, M. Patel, L. Tsai, S. Saroiu, A. Wolman, and
O. Mutlu, “Are we susceptible to rowhammer? an end-to-end method-
ology for cloud providers,” in 2020 IEEE Symposium on Security and
Privacy (SP). IEEE, 2020, pp. 712–728.

[9] L. Cojocar, K. Razavi, C. Giuffrida, and H. Bos, “Exploiting correcting
codes: On the effectiveness of ecc memory against rowhammer attacks,”
in 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 2019,
pp. 55–71.

[10] C. Cowan, F. Wagle, C. Pu, S. Beattie, and J. Walpole, “Buffer overflows:
Attacks and defenses for the vulnerability of the decade,” in Pro-
ceedings DARPA Information Survivability Conference and Exposition.
DISCEX’00, vol. 2. IEEE, 2000, pp. 119–129.

[11]
:
F.
:::

de
::::::

Ridder,
::
P.

:::::
Frigo,

::
E.
::::::::

Vannacci,
::
H.

::::
Bos,

:::
C.

:::::::
Giuffrida,

::::
and

::
K.

:::::
Razavi,

:
“
::::::
SMASH:

::::::::::
Synchronized

:::
Many

::::
-sided

:::::::::
Rowhammer

:::::
Attacks

:::
From

:::::::
JavaScript

:
,”
::

in
:::::::

USENIX
:::
Sec,

::::
Aug.

:::::
2021.

:
[
::::
Online].

::::::::
Available:

Paper=https://download.vusec.net/papers/smash sec21.pdfWeb=https:
//www.vusec.net/projects/smashCode=https://github.com/vusec/smash

[12]
:
L.
::::::

Dixon,
::::::

“Using
:::::::::

userfaultfd,”
:::::

2016.
:

[
::::
Online].

::::::::
Available:

:
https:

//blog.lizzie.io/using-userfaultfd.html
[13]

:
P.
:::::

Frigo,
::
C.

:::::::
Giuffrida,

::
H.
::::

Bos,
:::
and

::
K.
::::::

Razavi,
:::::
“Grand

::::::
pwning

::::
unit:

::::::::
Accelerating

:::::::::::::
microarchitectural

:::::
attacks

::::
with

::
the

::::
gpu,”

::
in
::::

2018
:::::

IEEE

:::::::
Symposium

:::
on

::::::
Security

::::
and

::::::
Privacy

::::
(SP).

:::
1em

::::
plus

:::::
0.5em

:::::
minus

::::
0.4em

::::
IEEE,

::::
2018,

:::
pp.

::::::
195–210.

:
[14] P. Frigo, E. Vannacc, H. Hassan, V. Van Der Veen, O. Mutlu, C. Giuf-

frida, H. Bos, and K. Razavi, “Trrespass: Exploiting the many sides of
target row refresh,” in 2020 IEEE Symposium on Security and Privacy
(SP). IEEE, 2020, pp. 747–762.

[15] M. Gorman, “Understanding the linux virtual memory manager,” IEEE
Transactions on Software Engineering, 2004.

[16] D. Gruss, “Program for testing for the dram ”rowhammer” problem
using eviction,” May 2017. [Online]. Available: https://github.com/
IAIK/rowhammerjs

[17] D. Gruss, M. Lipp, M. Schwarz, D. Genkin, J. Juffinger, S. O’Connell,
W. Schoechl, and Y. Yarom, “Another flip in the wall of rowhammer
defenses,” in 2018 IEEE Symposium on Security and Privacy (SP).
IEEE, 2018, pp. 245–261.

[18]
::
D.

::::
Gruss,

:::
C.

::::::
Maurice,

:::
and

::
S.
:::::::

Mangard,
::::::::::

“Rowhammer.
:::

js:
::
A

:::::
remote

:::::::::::
software-induced

::::
fault

::::
attack

::
in

:::::::
javascript,”

::
in
:::::::::
International

::::::::
conference

::
on

::::::
detection

::
of

:::::::
intrusions

:::
and

:::::::
malware,

:::
and

:::::::::
vulnerability

:::::::
assessment

:
.

:::
1em

:::
plus

::::
0.5em

:::::
minus

::::
0.4em

::::::
Springer,

::::
2016,

:::
pp.

:::::::
300–321.

[19] M. Guarnieri, B. Köpf, J. F. Morales, J. Reineke, and A. Sánchez,
“Spectector: Principled detection of speculative information flows,” in
2020 IEEE Symposium on Security and Privacy (SP). IEEE, 2020, pp.
1–19.

[20] J. Horn. (2018) speculative execution, variant 4: speculative store
bypass. [Online]. Available: https://bugs.chromium.org/p/project-zero/
issues/detail?id=1528
R. Hund, C. Willems, and T. Holz, “Practical timing side channel attacks
against kernel space aslr,” in S&P, 2013.

[21]
:::::
invictus,

::::::::
“Linux

::::::::
kernel

::::::
heap

:::::::::
spraying

::::
/
:::::::

uaf,”

::::
2017.

:
[
::::

Online]
:
.
::::::::

Available:
:

https://invictus-security.blog/2017/06/15/
linux-kernel-heap-spraying-uaf/

[22] J. S. Kim, M. Patel, A. G. Yağlıkçı, H. Hassan, R. Azizi, L. Orosa,
and O. Mutlu, “Revisiting rowhammer: An experimental analysis of
modern dram devices and mitigation techniques,” in 2020 ACM/IEEE
47th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 2020, pp. 638–651.

[23] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing them:
An experimental study of dram disturbance errors,” ACM SIGARCH
Computer Architecture News, vol. 42, no. 3, pp. 361–372, 2014.

[24] V. Kiriansky and C. Waldspurger, “Speculative buffer overflows: Attacks
and defenses,” arXiv preprint arXiv:1807.03757, 2018.

[25] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher et al., “Spectre attacks: Exploit-
ing speculative execution,” in 2019 IEEE Symposium on Security and
Privacy (SP). IEEE, 2019, pp. 1–19.

[26] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-Ghazaleh,
“Spectre returns! speculation attacks using the return stack buffer,” in
12th {USENIX} Workshop on Offensive Technologies ({WOOT} 18),
2018.

[27] A. Kwong, D. Genkin, D. Gruss, and Y. Yarom, “Rambleed: Reading
bits in memory without accessing them,” in 2020 IEEE Symposium on
Security and Privacy (SP). IEEE, 2020, pp. 695–711.

[28] C. Lameter and M. Kim, “Page migration,” 2016. [Online]. Available:
https://www.kernel.org/doc/Documentation/vm/page migration

[29] J. LCorbet, “Finding spectre vulnerabilities with smatch,” 2018.
[Online]. Available: https://lwn.net/Articles/752408/

[30] M. Linton and P. Parseghian, “More details about
mitigations for the cpu speculative execution issue,”
2018. [Online]. Available: https://security.googleblog.com/2018/01/
more-details-about-mitigations-for-cpu 4.html

[31] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn,
S. Mangard, P. Kocher, D. Genkin et al., “Meltdown: Reading kernel
memory from user space,” in 27th {USENIX} Security Symposium
({USENIX} Security 18), 2018, pp. 973–990.

16

Paper=https://download.vusec.net/papers/smash_sec21.pdf Web=https://www.vusec.net/projects/smash Code=https://github.com/vusec/smash
Paper=https://download.vusec.net/papers/smash_sec21.pdf Web=https://www.vusec.net/projects/smash Code=https://github.com/vusec/smash
https://blog.lizzie.io/using-userfaultfd.html
https://blog.lizzie.io/using-userfaultfd.html
https://github.com/IAIK/rowhammerjs
https://github.com/IAIK/rowhammerjs
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://invictus-security.blog/2017/06/15/linux-kernel-heap-spraying-uaf/
https://invictus-security.blog/2017/06/15/linux-kernel-heap-spraying-uaf/
https://www.kernel.org/doc/Documentation/vm/page_migration
https://lwn.net/Articles/752408/
https://security.googleblog.com/2018/01/more-details-about-mitigations-for-cpu_4.html
https://security.googleblog.com/2018/01/more-details-about-mitigations-for-cpu_4.html

[32] M. Lipp, M. Schwarz, L. Raab, L. Lamster, M. T. Aga, C. Maurice, and
D. Gruss, “Nethammer: Inducing rowhammer faults through network
requests,” in 2020 IEEE European Symposium on Security and Privacy
Workshops (EuroS&PW). IEEE, 2020, pp. 710–719.

[33] G. Maisuradze and C. Rossow, “ret2spec: Speculative execution using
return stack buffers,” in Proceedings of the 2018 ACM SIGSAC Confer-
ence on Computer and Communications Security, 2018, pp. 2109–2122.

[34] O. Mutlu and J. S. Kim, “Rowhammer: A retrospective,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 39, no. 8, pp. 1555–1571, 2019.

[35] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and countermea-
sures: the case of aes,” in Cryptographers track at the RSA conference.
Springer, 2006, pp. 1–20.

[36] C. Percival, “Cache missing for fun and profit,” 2005.
[37] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard,

“{DRAMA}: Exploiting {DRAM} addressing for cross-cpu attacks,”
in 25th {USENIX} security symposium ({USENIX} security 16), 2016,
pp. 565–581.

[38] F. Pizlo, “What spectre and meltdown mean for we-
bkit,” 2018. [Online]. Available: https://webkit.org/blog/8048/
what-spectre-and-meltdown-mean-for-webkit/

[39] T. C. Projects, “Site isolation,” 2018. [Online]. Available: https:
//www.chromium.org/Home/chromium-security/site-isolation

[40] K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giuffrida, and H. Bos,
“Flip feng shui: Hammering a needle in the software stack,” in 25th
{USENIX} Security Symposium ({USENIX} Security 16), 2016, pp. 1–
18.

[41] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina,
T. Prescher, and D. Gruss, “Zombieload: Cross-privilege-boundary data
sampling,” in Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, 2019, pp. 753–768.

[42] M. Schwarz, M. Schwarzl, M. Lipp, J. Masters, and D. Gruss, “Net-
spectre: Read arbitrary memory over network,” in European Symposium
on Research in Computer Security. Springer, 2019, pp. 279–299.

[43] M. Seaborn and T. Dullien, “Exploiting the dram rowhammer bug to
gain kernel privileges,” Black Hat, vol. 15, p. 71, 2015.

[44] M. Seaborne, “Program for testing for the dram ”rowhammer”
problem,” Aug 2015. [Online]. Available: https://github.com/google/
rowhammer-test

[45] A. Tatar, R. K. Konoth, E. Athanasopoulos, C. Giuffrida, H. Bos,
and K. Razavi, “Throwhammer: Rowhammer attacks over the net-
work and defenses,” in 2018 {USENIX} Annual Technical Conference
({USENIX}{ATC} 18), 2018, pp. 213–226.

[46] P. Turner, “Retpoline: a software contruct for preventing branch-target-
injection,” 2018. [Online]. Available: https://support.google.com/faqs/
answer/7625886

[47] V. van der Veen, Y. Fratantonio, M. Lindorfer, D. Gruss, C. Maurice,
G. Vigna, H. Bos, K. Razavi, and C. Giuffrida, “Drammer: Deterministic
rowhammer attacks on mobile platforms,” in CCS, 2016.

[48] VandySec, “rowhammer-armv8,” Apr 2019. [Online]. Available:
https://github.com/VandySec/rowhammer-armv8

[49]
::
K.

::::::::::
Viswanathan,

:::::::::
“Disclosure

:::
of
::::::::

hardware
::::::::

prefetcher
:::::::

control

::
on

::::::
some

:::::
intel

::::::::::
processors,”

::::::
2014.

:::
[
:::::
Online]

:
.
:::::::::

Available:
https://software.intel.com/content/www/us/en/develop/articles/
disclosure-of-hw-prefetcher-control-on-some-intel-processors.html

[50] vusec, “trresspass,” Mar 2020. [Online]. Available: https://github.com/
vusec/trrespass

[51] G. Wang, S. Chattopadhyay, I. Gotovchits, T. Mitra, and A. Roychoud-
hury, “oo7: Low-overhead defense against spectre attacks via program
analysis,” IEEE Transactions on Software Engineering, 2020.

[52] Y. Yarom. (2016) Mastik: A micro-architectural side-channel toolkit.
[Online]. Available: https://cs.adelaide.edu.au/∼yval/Mastik/Mastik.pdf

[53] Y. Yarom and K. Falkner, “Flush+reload: A high resolution, low noise l3
cache side-channel attack,” in 23rd USENIX Security Symposium, 2014.

[54] Z. Zhang, Z. Zhan, D. Balasubramanian, X. Koutsoukos, and G. Karsai,
“Triggering rowhammer hardware faults on arm: A revisit,” in ASHES,
2018.

[55] Z. Zhang, Y. Cheng, Y. Zhang, and N. Surya, “Ghostknight: Breaching
data integrity via speculative execution,” in arXiv, 2020.

APPENDIX

Fig. 6: Physical to DRAM map for Ivy Bridge/Haswell
(taken from [37]).

A. Reverse Engineering Virtual to DRAM Address Mapping

The following section explains the techniques used to obtain
the virtual to DRAM address mapping needed for double-
sided Rowhammer. These techniques manipulate the Linux
buddy allocator to first obtain a virtual to physical address
mapping [27]. Then, they use a timing side-channel to de-
termine which physical addresses correspond to rows in the
same bank [37], reverse engineering the physical to DRAM
address mapping. However, these techniques relied on the
use of the pagetypeinfo file for memory manipulation,
which has since been restricted to high privileged users. We
therefore develop a new technique using the world-readable
buddyinfo file.
Buddy Allocator. The buddy allocator is Linux’s system
for handling physical page allocation. It consists of lists of
free pages organized by order and migratetype. The order
is essentially the size of a free block of memory. Typically,
requests for pages from user space (for example, via mmap)
are served from order-0 pages. Even if the user requests
many pages, she will likely be served with a non-contiguous
block of fragmented pages. If there are no free blocks of the
requested size, the smallest available free block is split into
two halves, called buddies, and one buddy is used to serve
the request, while the other is placed in the free list of the
order one less than its original order. When pages return to the
freelist, if their corresponding buddy is also in the freelist, the
two pages are merged and moved to a higher-order freelist.
Migratetypes essentially determine whether a page is meant
to be used in user space (MOVABLE pages) or kernel space
(UNMOVEABLE pages) [15].
pagetypeinfo & buddyinfo files. The pagetypeinfo file
shows how many free blocks are available for each order and
migratetype. While previous techniques [27], [47] used this
file to track the state of free memory, pagetypeinfo has
since been made unreadable for low-privilege users. However,
a similar file, called buddyinfo shows how many total free
blocks are available for each order, combining the number
of kernel and user pages. Since pagetypeinfo has been
restricted from attacker access, we present a new technique
that uses buddyinfo for obtaining contiguous blocks of
memory.
Obtaining Contiguous Memory Blocks. In order to
control sets of contiguous DRAM rows, we must first obtain a
large chunk of contiguous physical memory. For the eventual

17

https://webkit.org/blog/8048/what-spectre-and-meltdown-mean-for-webkit/
https://webkit.org/blog/8048/what-spectre-and-meltdown-mean-for-webkit/
https://www.chromium.org/Home/chromium-security/site-isolation
https://www.chromium.org/Home/chromium-security/site-isolation
https://github.com/google/rowhammer-test
https://github.com/google/rowhammer-test
https://support.google.com/faqs/answer/7625886
https://support.google.com/faqs/answer/7625886
https://github.com/VandySec/rowhammer-armv8
https://software.intel.com/content/www/us/en/develop/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors.html
https://software.intel.com/content/www/us/en/develop/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors.html
https://github.com/vusec/trrespass
https://github.com/vusec/trrespass
https://cs.adelaide.edu.au/~yval/Mastik/Mastik.pdf

memory massaging step, described in Section V, the bit-flip
needs to reside in a contiguous block of memory at least
16 pages long. Additionally, as we will see in the following
paragraph, a 2MiB block will be helpful in obtaining physical
addresses. However, if we request a 2MiB block via mmap, the
allocator will service this request via fragmented, rather than
contiguous, memory. Therefore, to obtain a 2MiB contiguous
block, we first allocate enough memory to drain all smaller
sized (1MiB or smaller) user blocks, forcing the allocator to
supply us with a contiguous 2MiB block.
Using the buddyinfo file. However, with buddyinfo we
can only see the combined total of user and kernel blocks
remaining, but need to know when the number of 1MiB (and
lower) user blocks is worth less than 2MiB of memory. To
bypass this issue, we allocate blocks while monitoring the
remaining total amount via buddyinfo. By placing our
allocations at consecutive virtual addresses, we ensure our
allocations will mostly use user blocks, since kernel blocks for
new page table allocations will rarely be needed. Therefore we
can continue to drain blocks and watch the total 1MiB block
count decrease until it hits a minimum value and increases
again. This behavior signifies there were no remaining user
blocks to fulfill the request, requiring the 1MiB user block free
list to be refilled. The observed minimum value is therefore the
number of free 1MiB kernel pages, allowing us to subtract this
value from the total value at any given moment to obtain the
number of free 1MiB user pages.

We run the drain process again, subtracting the number of
kernel pages, until the remaining 1MiB user pages equals 0.
We can use the same process to drain the smaller blocks until
they consist of less than 2MiB worth of memory. Finally,
we request two 2MiB chunks of memory via mmap. Since
the allocator does not have enough smaller order blocks
to fulfill this request with fragmented pages, it is forced
to supply a contiguous 2MiB chunk. Our approach is able
to produce 2MiB pages with the same 100% accuracy of
pagetypeinfo . Since the additional step of calculating
the number of kernel blocks needs to be performed only once
during the entire attack (not once per massaging attempt),
using the buddyinfo technique incurs a negligible time cost.
Physical Addresses. To obtain the virtual to physical memory
mapping, we use technique presented in [27]. Having already
obtained a 2MiB block, we can learn the lowest 21 bits of a
physical address by finding the block’s offset from an aligned
address. We obtain this offset by timing accesses of multiple
addresses to learn the distances between addresses on the same
bank. By identifying the distance for each page within the
the block, we can retrieve the offset. With the mapping from
virtual to physical to DRAM addresses, we can sort virtual
addresses into aggressor and victim addresses corresponding
to three consecutive DRAM rows.
DRAM Addresses. Next, we require the physical to DRAM
address mapping. We can obtain it using Pessl’s timing side-
channel [37]. This technique takes advantage of DRAM banks’
rowbuffer. Upon accessing memory, charges are pulled from
the accessed row into a rowbuffer. Subsequent accesses read

from this buffer, reducing access latency. All rows that are
part of the same bank share a single rowbuffer. Therefore,
consecutive accesses to different rows within the same bank
will have increased latency, since each access needs to over-
write the rowbuffer. By accessing pairs of physical addresses
and categorizing them into fast and slow accesses, an attacker
can learn whether pairs lie in the same bank. Attackers can
compare the bits of enough addresses that lie in the same bank
to retrieve the mapping from physical addresses to DRAM.

Pessl et. al. [37] present the mapping function for numerous
processors, such as the Haswell mapping (shown in Figure 6).
Therefore, for attacks on Haswell, we can use this mapping as
is. For newer processors, we run Pessl’s attack (as provided in
[50]) on several machines, and obtain the mapping for Kaby
Lake, Coffee Lake, and Comet Lake processors.
Contiguous Blocks on DDR4. We previously explained the
need for 2MiB blocks when hammering on a Haswell machine,
since the physical to DRAM mapping uses the lower 21 bits.
Newer processors use up to bit 24 for their mapping when a
machine uses two channels with two DIMMs on each channel
(4-DIMM configurations). Up to bit 22 is used for two-DIMM
configurations and up to bit 21 for one-DIMM configurations
[11]. These newer processors are designed designed to use
DDR4. DDR4 Rowhammer techniques such as TRRespass
[14], use hugepages to obtain 2MB blocks which are sufficient
for one-DIMM configurations. For two-DIMM configurations,
memory massaging techniques can be used to obtain 4MB
contiguous blocks [11]. For 24-bit configurations, accuracy
is reduced by the number of unknown bits, meaning 1/4
reduction of flips in the worst case of 24 bits.

B. Modifications Made to Rowhammer Code

Rowhammer.js Modifications The code listings in this
section show the changes we made to existing Rowhammer
repositories to prevent the cache from masking bit-flips. List-
ing 7 shows the changes made to Rowhammer.js’s native
code. The first change on lines 530 and 531 fix a simple
error regarding virtual and physical addresses. The original
code passes virtual addresses into the get_dram_mapping
function, while this function is designed to use physical
addresses. The second modification occurs in lines 560 to 573.
In these additional lines of code, we flush any victim rows
immediately after they are initialized with test values. This
ensures that when we later read these rows to check for flips,
we will read directly from DRAM and not the cache.
TRRespass Modifications Listing 8 shows the modifications
made to TRRespass. We found that cache flushes needed to be
added to multiple regions of code to minimize the number of
hits that occur when checking for flips. Data is first initialized
in the init_stripe function starting at line 386. This
function is called once during a TRRespass session to initialize
the entire region of victim data. While many rows are naturally
evicted from the cache due to initialization over a region too
large to fit in the cache all at once, many initialized values
do still remain in the cache in the original code. We therefore
added flushes after every write to memory.

18

.....
526 if(OFFSET2 > =0)
527 second_row_page = pages_per_row[row_index+2].at(OFFSET2);
528 if (
529 //******fixed bug***********
530 get_dram_mapping((void*)(GetPageFrameNumber(pagemap,first_row_page)*0x1000))
531 !=
532 get_dram_mapping((void*)(GetPageFrameNumber(pagemap,second_row_page)*0x1000))
533 //************************
534)

{

....
556

557 #ifdef FIND_EXPLOITABLE_BITFLIPS
558 for(size_t tries = 0; tries < 2; ++tries)
559 #endif
560 {
561 //******cache flush victim***********
562 int32_t offset = 1;
563 for (; offset < 2; offset += 1)
564 for (const uint8_t* target_page8 :
565 pages_per_row[row_index+offset])
566 {
567 const uint64_t* target_page = (const uint64_t*)
568 target_page8;
569 for (uint32_t index = 0; index < (512);
570 ++index) {
571 uint64_t* victim_va = (uint64_t*)
572 &target_page[index];
573 asmvolatile("clflush(%0)"::"r"(victim_va):%"memory");

}
}

34 //**********************************
35 hammer(first_page_range, second_page_range, number_of_reads);
36
37 }

Listing 7: Rowhammer.js Modifications

TRRespass then checks for flips using the scan_stripe
function starting in line 571. When finding a flip (if res is
non-zero), the flipped data is reinitialized to its initial value.
However, there may still be some data within the same cache
line that has not yet been checked. We therefore flush the
cache to ensure checked data is pulled from DRAM and not
the cache.

After completing a hammering session, TRRespass calls
fill_stripe which refills victim rows with initial data.
Similar to the init_stripe function, we must flush this
initial data from the cache.

Finally, while the hPatt_2_str function (starting at line
134) does not directly interact with victim data, we found that
its memset call does pull victim data into the cache. This is
likely due to the processor’s buddy cache system, which pulls
adjacent cache-lines together, even when only one is accessed,
to improve performance. We therefore flush this memset data
as well.

C.
:::::::
Verifying

:::
the

::::::
Effects

:::
of

:::::::
Caching.

::
In

::::
order

::
to
:::::::
confirm

::::
that

::
the

:::::
reads

::::
were

::
in
::::
fact

::::::
reading

::::::
cached

::::
data,

:::
we

::::::::
modified

:::
the

::::::
existing

:::::
code

::
to

:::::::
measure

:::
the

:::::::
number

::
of

:::::
cache

:::
hits

::::
and

:::::
misses

::::
that

:::::
occur

:::
per

::::::
victim

::::::
address

::::::
check.

:::
We

::
do

::
so

::::::
using

::
by

::::::
timing

:::::
each

:::::
access

::::
and

:::::::
marking

::::
fast

:::::::
accesses

Rowhammer.js
:::::
Without

:::::
cache

:::::
flushes

:::
With

:::::
cache

:::::
flushes

:::
hits

::::::::
105,530,250

: :
1

:::::
misses

:::::
377,915

: ::::::::
107,347,967

::::
%flips

:::
on

::::
misses

: :::
100%

: :::
100%

:::
flips

: :
12

: :::
2806

TABLE III:
:::
The

::::::
effect

:::
of

:::::::
flushing

:::::::
victim

:::::::::
addresses

:::
on

::::::::::::
Rowhammer.js

:

TRRespass
:::::
Without

:::::
cache

:::::
flushes

:::
With

:::::
cache

:::::
flushes

:::
hits

:::::::
23,914,118

: :::::
14,078

:::::
misses

:::::::::
2,081,626,490

: :::::::::
2,105,526,350

::::
%flips

:::
on

::::
misses

: :::
100%

: :::
100%

:::
flips

: :::
431

:::
4795

TABLE IV:
:::
The

::::::
effect

:::
of

::::::::
flushing

::::::
victim

:::::::::
addresses

:::
on

:::::::::
TRRespass

:

::::
(less

::::
than

::::
100

::::::
cycles)

:::
as

:::::
cache

::::
hits

::::
and

:::
all

::::::
slower

:::::::
accesses

::
as

:::::
cache

:::::::
misses.

:::::
Since

::::::::
accesses

::::
pull

:::::
entire

::::::
cache

::::
lines

:::
into

::
the

::::::
cache,

::::
and

:::::
each

::::
line

::
is

:::::
64B,

:::
we

::::
only

::::::::
measure

:::
the

::::
first

:::::
access

:::
per

::::::
cache

::::
line,

::::
and

::
all

:::::
other

::::::::
accesses

:::::
within

::::
the

::::
same

::
set

:::
are

:::::::
labeled

:::::::::
according

::
to

:::
the

::::::
timing

:::
of

::::
their

::::
first

:::::::
address.

::::::::::
Additionally,

::::
we

:::::::::
measured

:::
the

:::::::
number

:::
of

::::
hits

::::
and

::::::
misses

:::::::
observed

:::::
when

:::::
extra

:::::
cache

:::::::
flushes

::::
were

::::::
added

::
to

::::::
ensure

:::
we

:::
read

::::::
victim

::::
data

::::
from

:::::::
DRAM

:::::
rather

::::
than

:::
the

:::::
cache.

:::::::
Finally,

::
we

19

.....
134 char *hPatt_2_str(HammerPatter * h_patt, int fields)
135 {
136 static char patt_str[256];
137 char *dAddr_str;
138

139 memset(patt_str, 0x00, 256);
140 //******new cache flushes******
141 clflush(patt_str);
142 clflush(patt_str + 64);
143 clflush(patt_str + 128);
144 clflush(patt_str + 192);
145 clflush(patt_str + 256);
146 //*****************************

.....

284 void fill_stripe(DRAMAddr d)addr, uint8_t val, ADDRMapper *
285 mapper)
286 {
287 for (size_t col = 0; col < ROW_SIZE; col += (1 << 6)) {
288 d_addr.col = col;
289 DRAM_pte d_pte = get_dram_pte(mapper, &d_addr);
290 memset(d_pte.v_addr, val, CL_SIZE);
291 //******new cache flushes******
292 clflush(d_pte.v_addr);
293 clflush((d_pte.v_addr) + CL_SIZE);
294 //*****************************
295 }

}

.....
386

387 void init_stripe(HammerSuite * suite, uint8_t val){
388
389 for (size_t col = 0; col < ROW_SIZE; col += (1 <<
390 6)) {
391 d_tmp.col = col;
392 DRAM_pte d_pte = get_dram_pte(mapper, &d_tmp);
393 memset(d_pte.vaddr, val, CL_SIZE);
394 //******new cache flushes******
395 clflush(d_pte.v_addr);
396 clflush((d_pte.vaddr) + 64);
397 //*****************************
398 }
399 }
400 }

}
.....
void scan_stripe(HammerSuite * suite, HammerPattern * h_patt,

571 size_t adj_rows, uint8_t val){
.....

if(res){
for (int off = 0; off < CL_SIZE; off++){

599 if (!((res >> off) & 1))
600 continue;
601 d_tmp.col += off;
602

603 flip.d_vict = d_tmp;
614 flip.f_og = (uint8_t) t_val;
605 flip.f_new = *(uint8_t *) (pte.v_addr + off);
606 flip.h_patt = h_patt;
607 export +flip(&flip);
608 memset(pte.v_addr + off, t_vall, 1);
609 //******new cache flushes******
610 clflush(pte.v_addr + off);
611 //*****************************
612 }
613 memset((char *)(pte.v_addr), t_val, CL_SIZE);
70 //******new cache flushes******

615 clflush(pte.v_addr);
616 clflush((pte.v_addr) + CL_SIZE);
617 //*****************************
618 }

Listing 8: TRRespass Modifications

20

:::::::
disabled

:::
the

:::::
cache

:::::::::
prefetcher

::::
[49]

:
,
::::
since

:::::::::
otherwise,

::::::::
accessing

:
a
::::::
single

:::
set

::::::
would

::::
pull

:::::::::
additional

::::
sets

::::
into

::::
the

:::::
cache

::::
and

::::
make

::::::::::
subsequent

:::::::
accesses

::::::
appear

::
to

:::
be

:::::
cache

:::
hits

:::::
even

:
if
::::
they

:::
had

:::::
been

::::::
flushed

:::::
prior

:::
to

::::::::::
hammering.

::::
For

:::
the

::::::
DDR3

:::::
tests,

::
we

:::::
used

::
a

:::::::
Haswell

:::::::
i7-4770

:::::::::
processor

:::::::
running

::::::
Linux

:::::
kernel

::::::
4.17.3,

:::
and

::::::::
Samsung

::::::
DDR3

::::
4GB

:::::::
DIMM.

:::
For

::::::
DDR4

:::
we

::::
used

:
a
::::::
Coffee

::::
Lake

:::::::::
i7-8700K

::::::::
processor

:::::::
running

:::::
Linux

::::::
kernel

::::
5.4.0

:::
and

::::::::
Samsung

::::::
DDR4

::::
8GB

:::::::
DIMM.

::::
The

::::::::::
experiments

:::::
were

:::
run

::
for

::
2
:::::
hours

:::::
each.

::::
The

::::
data

::::
was

::::::::
initialized

:::::
with

:
a
:::::
0-1-0

:::::
stripe

::::::
pattern

:::
for

::
all

:::::::::::
experiments.

:

:::
The

::::::
results

:::
are

::::::
shown

:::
in

::::::::
Table III

:::::::
(DDR3)

::::
and

::::::::
Table IV

:::::::
(DDR4).

:::::
The

::::::
DDR3

:::::
test

::::
was

::::::
based

::::
on

:::::::::::::
Rowhammer.js

:::::
[16]

:::
and

::::::
DDR4

:::
on

:::::::::::::::
TRRespass [50]

::
as

::::
they

::::
are

:::
the

:::::
latest

::::::::::
Rowhammer

::::::::::
repositories

::::
for

::::
their

:::::::::
respective

::::
type

::
of

:::::::
DIMM.

:::
For

::::
both

:::::
tests

::::::
100%

::
of
::::

the
::::

flips
:::::

were
:::::::::

observed
:::
on

:::::
cache

::::
miss

:::::::
accesses,

:::::::::
supporting

::::
our

:::::::::
observation

::::
that

:::
the

:::::
cache

:::::
masks

:::::::
bit-flips.

::::
With

:::
the

::::::
DDR3

:::::
tests,

:::::::::
neglecting

::
to

:::
use

::::::
victim

:::::
cache

::::::
flushes

:::::
results

:::
in

:
a
:::::
large

:::::::
majority

::::::::
(99.64%)

:::
of

:::
the

:::::::::
flip-checks

::::::
reading

:::::::
cached

::::
data.

:::
A

::::::::::::
non-negligible

::::::::
377,915

:::::::
accesses

:::
do

:::::
occur

::
on

:::::
cache

:::::::
misses,

::::::
which

::
is

:::::
likely

::::
why

:::
the

:::::::
original

::::
code

:::
was

::::
able

::
to
:::::::

observe
::::
any

::::
flips

::
at

:::
all.

:::::::::
However,

::::
once

:::
the

:::::
cache

::::::
flushes

:::
are

::::::
added,

::::::
nearly

:::
all

:::
the

:::::::
accesses

:::::::
directly

:::::
read

::::
from

:::::::
DRAM,

:::::::::
revealing

::
a
::::::
drastic

:::::::
number

:::
of

:::::
flips

::::
that

::::
had

::::
been

::::::::
previously

:::::::
masked

:::
by

::::::
cache,

::::::::
resulting

::
in

::
a
:::::
233x

:::::::
increase

::
in

::::
flips.

:

::
As

:::
for

:::
the

::::::
DDR4

:::::::
results,

:::
the

::::::::::
unmodified

::::
code

:::::::
already

:::
had

:
a
::::
large

:::::::
number

::
of

:::::::
misses.

:::
The

::::::
reason

::
is
::::
that

:
a
:::::
larger

::::::
region

::
of

:::
data

::
is
:::::::::

initialized
:::

all
::
at
:::::

once
::::::
before

:::::
being

::::::::::
hammered,

:::::
which

:::::
results

::
in
::::::

much
::
of

:::
the

::::
data

:::::
being

:::::::
evicted

::::
from

::::
the

:::::
cache

:::
due

::
to

:::
the

:::::::
cache’s

::::::
limited

:::::
size.

:::::::::
However,

:::
the

:::::::::
additional

::::::
flushes

::::
were

::::
able

::
to

::::::
reduce

:::
the

:::::::
number

::
of

::::
hits

::
by

:::::::
99.94%,

:::::::::
drastically

:::::::
reducing

:::
the

:::::::
amount

::
of

:::
bit

::::
flips

:::::::
masked

:::
by

:::
the

::::::
cache.

21

	Introduction
	Our Contributions

	Background
	Cache Side-Channel Attacks
	Spectre
	Rowhammer

	SpecHammer
	Double Gadget Attack: Removing Attacker Control
	Triple Gadget Attack: Enabling Arbitrary Memory Reads

	Memory Templating
	Obtaining DRAM row indices from virtual addresses
	Hammering Memory

	Memory (Stack) Massaging
	User Space Stack Massaging
	Kernel-Space Stack Massaging

	Gadget Exploitation
	Double Gadget – Stack Canary Leak
	Triple Gadget - Arbitrary Kernel Reads

	Gadgets in the Linux Kernel
	Gadget Search.
	Kernel Gadget Exploit

	Mitigations
	Conclusion
	References
	Appendix
	Reverse Engineering Virtual to DRAM Address Mapping
	Modifications Made to Rowhammer Code
	Verifying the Effects of Caching.

	293ab811-3fc6-43d2-baae-125f221e0727.pdf
	Introduction
	Our Contributions

	Background
	Cache Side-Channel Attacks
	Spectre
	Rowhammer

	SpecHammer
	Double Gadget Attack: Removing Attacker Control
	Triple Gadget Attack: Enabling Arbitrary Memory Reads

	Memory Templating
	Obtaining DRAM row indices from virtual addresses
	Hammering Memory

	Memory (Stack) Massaging
	User Space Stack Massaging
	Kernel-Space Stack Massaging

	Gadget Exploitation
	Double Gadget – Stack Canary Leak
	Triple Gadget - Arbitrary Kernel Reads

	Gadgets in the Linux Kernel
	Gadget Search.
	Kernel Gadget Exploit

	Mitigations
	Conclusion
	References
	Appendix
	Reverse Engineering Virtual to DRAM Address Mapping
	Modifications Made to Rowhammer Code
	Verifying the Effects of Caching.

